

TRAINING PROGRAM FLOW CHART

WHAT LebenTech DO

Demonstrated Capabilities Includes:

- Reliability, Availability, and Maintainability [RAM] Analysis.
- Equipment failure and repair data acquisition and analysis.
- Productive system case study and evaluation.
- Customize training for personnel.
- Equipment life cycle cost analysis.
- Asset improvement optimization.
- **Operation research.**
- Reliability testing and analysis.
- **Production** reliability model development.
- **Reliability and manufacturing optimization.**
- **Productivity** measurement and improvement.
- Modeling and analysis of manufacturing systems.
 - FRACAS Implementation and management.
 - Reliability program development and implementation.

Expert

Consulting

Integrated

Solutions

Proven Methods

Best Practice

Research

Reliability

Optimization

Flexible Cost

Manufacturing

Optimization

CORPORATE HEADQUARTERS

Presenter: Lennox Bennett

Sample Road Coral Springs | FL 33067 | 954 - 796 - 7107 | info@lebentech.com | www.lebentech.com

THE THREE DAYS PROGRAM

Based on Key Principles

This seminar integrates strategies, applications and results. You will not only learn how to implement a design for reliability program and methods for enhancing product design, but also be informed of cost implications, emphasizing how they can influence you to develop a reliable design.

- For sustained growth and to thrive in a competitive market your company must manage the product design process more effectively and efficiently than your competitors.
- Acquiring the benefits of product design for reliability requires a significant change that begins with creating a reliability culture. This requires dedicated support from top management throughout the organization.
- Your participation in this seminar will enable you to avoid the trap of piecemeal reliability. You will walk away with a true vision and perspective of a structured approach to designing reliability into product.
- It is difficult to be profitable if you cannot achieve reliability at a reasonable price. Reliability begins with robust design, procurement and installation then there is transfer to operations and maintenance. A common reliability vision that represents the company's interest should be established.

FOCUS OF EACH DAY PRESENTATION

Day 1

٠

•

- Provides the value proposition for a cohesive, business driven product design reliability strategies and creates foundation of understanding of the principal tools required to manage or determine product reliability and the impact of human factors in reliable design.
 - Participants will be exposed to various concepts and reliability methods that can be utilized to develop a reliable system. They will also be provided with the opportunity of learning how to incorporate statistical thinking to optimize product design parameters.

Day 2

- Addresses how various testing strategies are utilized to characterized, verify, validate product reliability requirements and improve product reliability during development. We will also discuss how reliability engineering data analysis will enable you to make more effective decisions and manage risk.
- On this day we will discuss how to instill performance metrics that are proactive and is focused on verification of design adequacy. We will illustrate how these technique are used for quantifying and improve product reliability in the development phase.

FOCUS OF EACH DAY PRESENTATION

Day 3

- Focuses on emphasizing methods of evaluating product design risks, integrating DFR with Safety, and serves to quantify the contribution of reliability and risk to safe performance of the product.
 - A comprehensive analysis is provided regarding designing products for warranty cost reductions. Participants will be presented with opportunities to solve various problems associated with product warranty claims. We will also discuss methods of optimizing warranty period.
 - On this day we extend the discussion to incorporate various approaches utilized in the process of testing software based on different objectives. A limited segment of the time is devoted to software verification techniques and software system safety.
 - We also present various methods that are used to develop reliable software. A special emphasis is given to software testing strategies and elements of the testing process.
 - Last but not least the discussion will culminate with validating software for reliability.

BENEFITS FOR ATTENDING SEMINAR

Participants shall leave the seminar with the following specific information and concepts:

- Knowledge for the implementation and application of reliability concepts and techniques learned that will create value in business operations.
- **Information** necessary for developing and designing products to function for reliability.
- **Understanding of how reliability engineering data analysis will enable them** to make more effective decisions and manage risk.
- Knowledge of how to apply RCFA to get out of the cycle of recurring failures caused by doing the same thing but expect different results.
- Methods of how to approach reliability as a collaborative process between management, design, procurement, operations and maintenance.
 - **Top management perspective of the strategic importance of product reliability management for business success.**
 - General competence and understanding of the best tools and methods needed to implement and sustain a successful product reliability program.

BENEFITS FOR ATTENDING SEMINAR

Strategic and Competitive Benefits of Attending and Implementing What you Learn

Table 1-1: Impact	of	implementing	what	is	learned
Table 1-1. Impact	UI	implementing	vv mat	10	icarneu

Strategic Advantages	Competitive Advantages
Achieve and sustain Profitability.	Better product development strategy.
Teams walk away with a common vision and understanding of DFR.	Increased availability – more time operating and output per hour.
Increase customer satisfaction.	Reduction in cost of unreliability.
Helps develop a reliability leader.	Proactive reliability driven maintenance.
Improved safety.	Low system maintenance cost – company's with the highest product reliability have the lowest maintenance cost.
Confidence in design and reliability process.	Better managed and controlled process.
Helps reduce product vulnerability.	Survival in a competitive market.

M1 - LEARNING OBJECTIVES

Participant Shall be able to:

- **Determine the cost consequences of poor product reliability.**
- **Recognize and develop reliability specification for their products.**
- **Develop and implement a generic DFR process for their company's product | system design.**
- **Develop general understanding of how reliability techniques are applied to design robust products.**
- Gain understanding of concepts, metrics, and methods used in reliability, when to apply a specific tool during the product development life cycle.
 - Adapt and effective reliability culture within their organization and helps determine what needs to be added or improved in their DFR initiative.

Adapt | Implement | Improve

INTRODUCTION

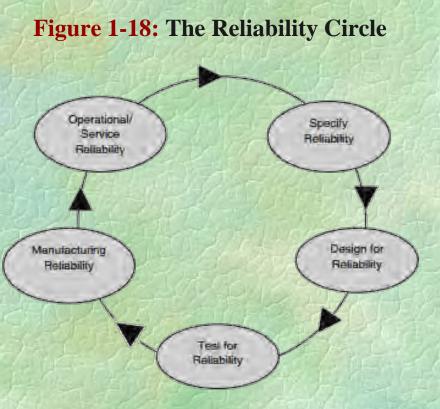
Design for Reliability is a technical seminar designed to equip participants of varying backgrounds and from various industries with sufficient understanding regarding reliability assessment, methods used to ensure their company's products are reliably designed and parts are applied in a robust manner.

This seminar presents an overview of the analytical tools utilized to ensure a robust design, minimal variations and discusses several considerations for ensuring a manufacturable product.

To maximize return on net asset, company's must create a synergy between the affecting functions of a system and product design, procurement, product maintenance, product risk, product vulnerabilities, and product availability. This is the scope of integrating engineering design and reliability methods in product development.

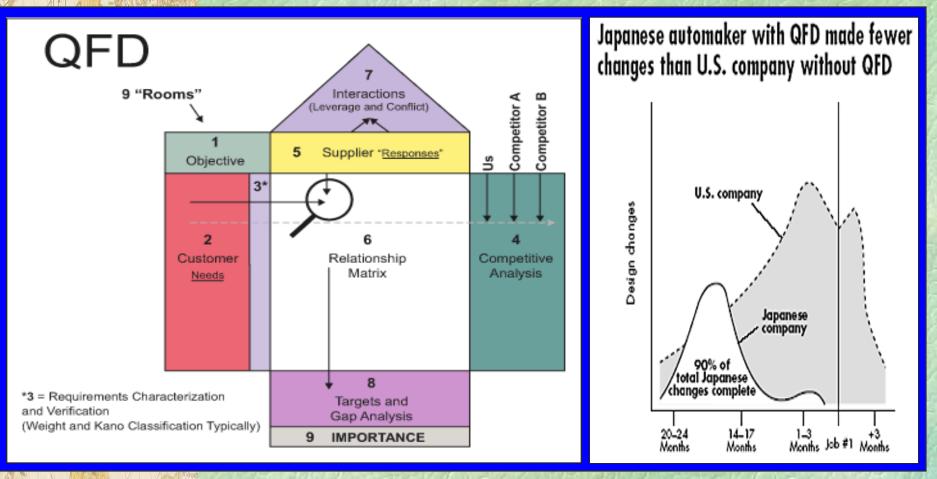
Selective application of hardware and software reliability methods will provide you with a better understanding of the strategic and engineering components of a successful reliability modeling and reliability program, and the analytical tools available to more effectively managed business risk relating to product development.

This inaugural seminar will not only inform, but challenge every aspect about how you currently design your products.



٠

٠

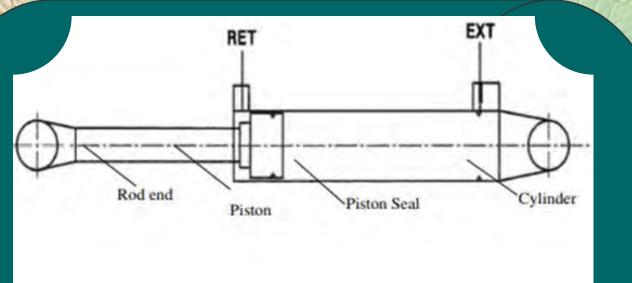

Specify Reliability

- **The first step in the reliability circle is to** establish the reliability specifications/targets.
- It is essential that the requirements come from customer needs and wants and program objectives.
- □ The following are the different methods to collect the reliability information: House of Quality (Customer needs and wants), customer surveys, benchmarking, customer duty cycles and environment, experience from similar existing products such as warranty data, etc.
- Gather the data from above sources and prioritize them to set the targets.
- Reliability requirements are statements that detail functional, mission oriented requirements with minimum Life Cycle cost, resources and maximum probability of success.

Figure 1-1: Elements of Quality Function Deployment

Overview of Design for Reliability

- Design for reliability objectives includes the identification of failure modes and means for preventing them or minimize the effects of these failure modes.
- □ It is possible by successful implementation of the techniques such as Failure mode and effects analysis, Fault tree analysis, stress analysis, reliability modeling, design of experiments, root cause analysis techniques and by implementing redundancy in the design. The reliability will be built into product by providing safety factors to the design.
- □ Other objective is reduction of variability in presence of the noise. It is achieved by applying design of experiments, parameter design and tolerance design during product design.
- □ The first major tool to be used is Failure Modes and Effects Analysis (FMEA). This is an important tool to ensure that reliability is integrated with product design.



Overview of Design for Reliability

- **Reliability modeling is used to make initial product Reliability or failure rate estimates.**
- These estimates are important in understanding the feasibility of a design's capability of meeting the reliability goals needed to satisfy customer requirements.
- Also, such calculations direct and assist in the determination of design tradeoffs to ensure that the best design approach is taken.
- Example Application: Let's calculate the reliability of an actuator (Figure 1-19)? Reliabilities of cylinder, piston, Rod end, and piston seal at 50,000 flight cycles are 0.992, 0.99, 0.995, and 0.97.
- Solution: Since all the components are essential for the successful extension and retraction of the actuator, all the components fit in a series reliability model.

Figure 1-19: Simplified Actuator

$$\begin{split} R_{Actuator} &= R_{Cylinder} \times R_{piston} \times R_{Rod \, end} \times R_{piston \, seal} \\ &= 0.992 \times 0.99 \times 0.995 \times 0.97 \\ R_{actuator} &= 0.9479 @50,000 \, flight cycles \end{split}$$

Maintain the Manufacturing Reliability – Process Control Methods

- □ The manufacturing engineer is then responsible for ensuring that the manufacturing process does not deviate from the specifications.
- Here more aspects of reliability engineering discipline merge with quality engineering. Statistical Process Control (SPC) methods can be useful in this regard.
- HALT, Burn-in and Screening (HASS) are designed to prevent infant mortality failures, which are typically caused by manufacturing-related problems, from happening in the field.

	Process Capability Indices for Bi-lateral Tolerances					
	ji can	Vergolini Esimale Used	Formula	indo	Variation Estimate Used	Formula
SIX SIGMA DIGEST	8	ð	$C_{\mu} + \frac{1022 + 1.02}{4.0}$	Pic.		$F_{g} = \frac{U \Pi_{c} - L \Pi_{c}}{4 z}$
$L SL = \frac{C_0}{\sqrt{1 + (u-1)^2}}$	254	ġ	$C_{\mu} = \min \Biggl[\frac{10\pi - \overline{p}}{32}, \frac{\overline{p} - 4\pi}{32} \Biggr]$	÷.	÷	$F_{\rm s} + \sin \left[\frac{m - T}{2 c} \frac{T - m}{c} \right]$
	P.	ä	C. + 5.8 002-151	ø	Ξx.	R + <u>85</u> 1 <u>00 - 150</u>
	SP.	đ	$C_{\mu\nu} = \frac{(\lambda d - L d}{s \sqrt{b^2 + (\bar{X} - Z A d)^2}}$	^{is} pi-		$F_{\mu\nu} = \frac{101 - 1.01}{6\sqrt{1^2 + \left(\frac{1}{2} - 7.03\right)^2}}$

WHAT CUSTOMERS CARES ABOUT

Motivation for DFR

- **Product Life...... i.e. useful life before product begins to wear-out**
 - Minimum Downtime..... i.e. System Mean Time to Failure
- Stable Performance...... i.e. number of operations, robust performance in various environment
- **Operation** at Test..... i.e. product performs at incoming test, diagnostics checks
- **On Time Startup.....** i.e. ease of device or system start ups, **not dead on arrivals**.

Old Measures [Internal]:

- 1. RMA rates.
- 2. Warranty Cost

New Measured Metrics (External)

- 1. Product Life-Cycle Costs.
- 2. Service Contract Metrics.
- **3.** Consumer Operational Impact.

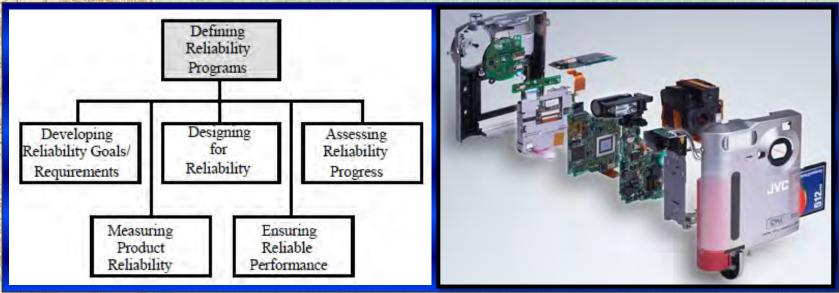
Key Considerations

Reliability in Product Designs

Effective and reliable performance of equipment/system is imperative:

- 1 In world of reliability optimization.
- 2 In world of robust product design.

Plan and execution of efficient and safe product operation.


- **1.** Inherently requires effective risk reduction.
- 2. Reliability analysis of critical components and subsystems.
- **3.** Evidence of equipment quantification through risk analysis.
- 4. Regulation for risk assignment apply to all equipment critical to operation success.
- 5. Operate to minimize risk associated with equipment.
- 6. Risk analysis becomes safety issue.
- 7. FDA requires risk analysis as portion of design control.

Associated risk render application of reliability engineering techniques imperative.

RELIABILITY APPLICATION IN NEW PRODUCT DESIGN

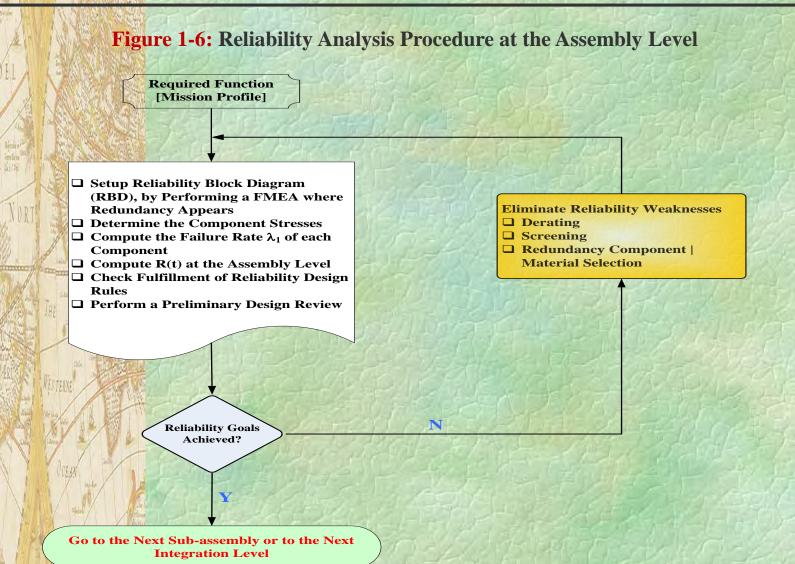

How is Reliability Designed into The Product?

Figure 1-4: RiAC Blue Print for Product Reliability

RELIABILITY APPLICATION IN NEW PRODUCT DESIGN

RELIABILITY ENGINEERING CONCEPTS

What is Reliability?

For the Customer:

A reliable medical device does what the customer wants to do, when the customer wants to do it.

Translation

For the Designer

The reliability of the medical device is the probability, at a desired confidence level, that the medical device will perform its function, without failure, under pre-established conditions, during a specified period of time.

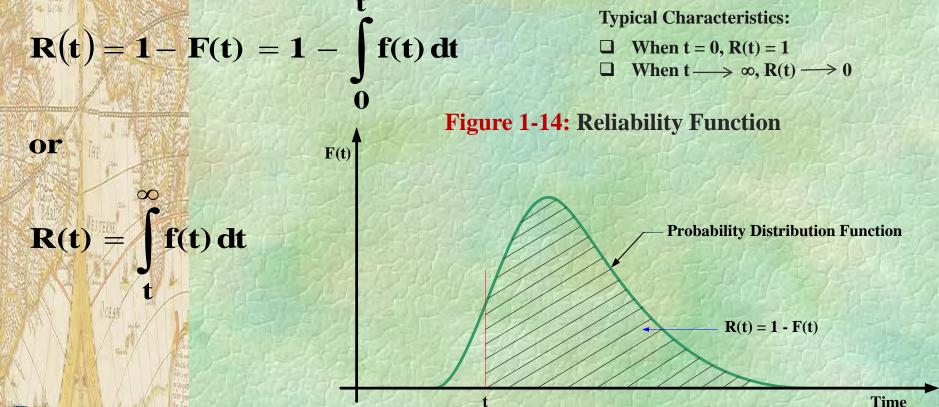
COMMON USEFUL FUNCTIONS IN DFR

Five Common Functions in Reliability

Reliability Function

☐ The reliability function can be derived using definition of the cumulative distribution function, $F(x) = \int_0^x f(s)ds$. From our definition of the *cdf*, the probability of an event occurring by time t is given by:

$$F(t) = \int_0^t \bar{f}(s) ds$$


- □ Or one could equate this event to the probability of a unit failing by time t. Since this function defines the probability of failure by a certain time, we could consider this the unreliability function.
- Subtracting this probability from 1 will give us the reliability function, one of the most important functions in life data analysis. The reliability function gives the probability of success of a unit undertaking a mission of a given time duration. Figure 1-14 illustrates this.

RELIABILITY FUNCTION AND ITS APPLICATION

Reliability Function R(t)

The reliability of a product is the probability that it does not fail before time t. It is therefore the complement of the CDF:

RELIABILITY FUNCTION AND ITS APPLICATION

Example Application

Time to failure distribution of a computer memory chip follows normal distribution with mean 9000 hours and standard deviation 2000 hours. Find the reliability of this chip for a mission of 8000 hours.

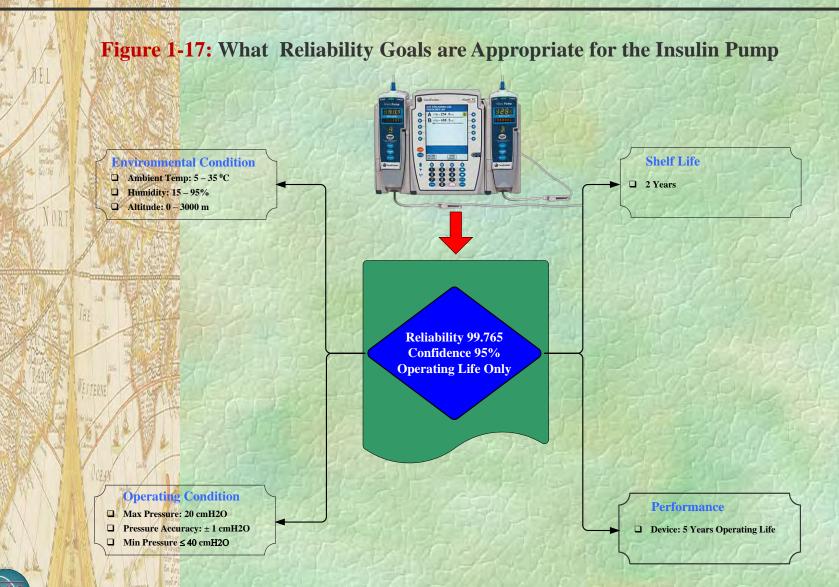
SOLUTION

Using Table 1-6, the reliability for a mission of 8000 hours is given by:

$$\mathbf{R}(\mathbf{t}) = \Phi\left(\frac{\mu - \mathbf{t}}{\sigma}\right) = \Phi\left(\frac{9000 - 8000}{2000}\right) = \Phi(0.5) = 0.6915$$

Reliability function, R(t), is defined as the probability that the system will not fail during the stated period of time, t, under stated operating conditions. If TTF represents the time-to-failure random variable with failure function (cumulative distribution function) F(t), then the reliability function R(t) is given by: R(t) = $P{\text{the system doesn't fail during } (0, t)} = 1 - F(t)$

UNDERSTANDING RELIABILITY SPECIFICATIONS


Common Reliability Specifications

- At a minimum, a reliability specification (Quantitative) should consist of three basic components.
 - 1. A specified reliability.
 - 2. Time associated with specified reliability.
 - 3. A desired confidence level.
- Consideration is also given to:
 - 1. Normal environmental condition.
 - 2. What constitute a failure.
 - 3. Measurement of time.
 - 4. Frequency and type of preventive maintenance.
- MTBF (after a specific time)
 - 1. 99% reliability after 2 years of operation with 95% confidence level.
 - 2. A scale of measurement of time must be set (Hours, cycles, shelf life, etc.).
 - 3. The meaning of failure must be absolutely clear (Written definition).
 - Mean Time to Fail (MTTF): Not appropriate for use as a sole reliability metrics.

۲

UNDERSTANDING RELIABILITY SPECIFICATIONS

ELEMENTS OF RELIABILITY REQUIREMENTS

Fundamental Elements for Consideration

Measurable

Reliability specification are best represented as probability statements that are measured by analysis or test during product development.

Customer usage and operating environment

In developing specifications consideration must be given to the use and conditions for application.

Confidence

A confidence level should be specified for a reliability requirement. This allows for variation in data when compared with specification.

Time | Age

Could mean hours, years, cycles, mileage, actuations (Whatever is associated with age of the equipment). For example 90% reliability at 10,000 actuations.

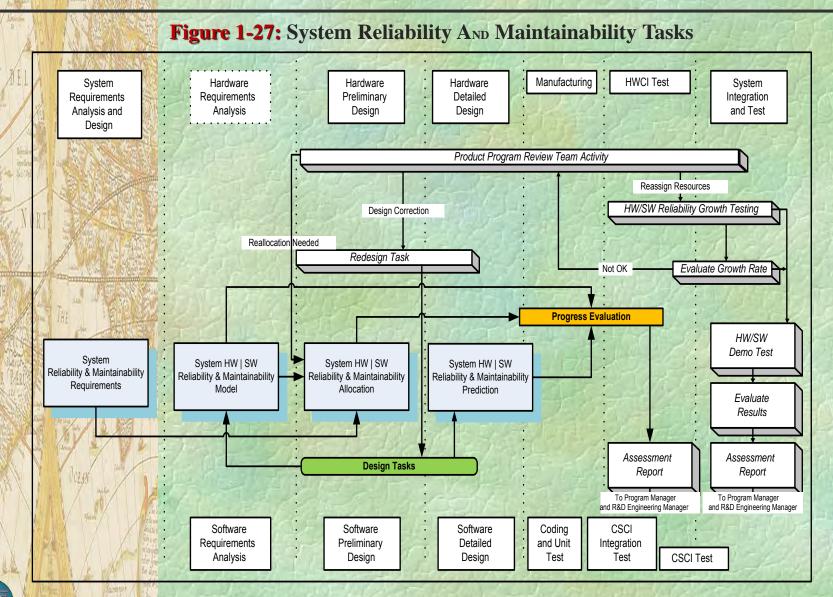

HW AND SW RELIABILITY APPLICATION

Figure 1-23: Clinical Medical Devices – Infusion Pump | Dialysis Machine | LexSx[®] Laser

SYSTEM RELIABILITY APPLICATION

DESIGN PHASE RELIABILITY TOOLS

A REL	Table 1-10: Techniques that can be Applied to Improve Reliability					
ltem No.	Reliability Tools Comments					
line line line line line line line line	Reliability Growth Tests	A test that identifies problems and solves them as the design progresses. Thus, is essentially, a "test, analyze, and fix" method that is used in a closed- loop corrective action manner				
Nort 2	Durability Tests	Typically, Accelerated Tests that determine the failure rate for the entire expected life. Duplicates field failures by providing a harsher but representative environment. Performed instead of testing under normal conditions in order to eliminate testing that would otherwise take months or years.				
3	Qualification Tests	Consist of stressing the product for all expected failure mechanisms. The test can be stopped if there are no failures during the expected life—thus, are performed to measure the achievement of the reliability requirement.				
4	Demonstration Tests	Design Approval Tests are similar and usually require stressing during only a portion of the useful life.				
5	Compliance Test	Test executed to ensure product performance complies with specific standards such as: IEC – 60601-1-2, UL , DOE 160E, AND MIL-STD-810				

USE APPLICABLE ENGINEERING TEST

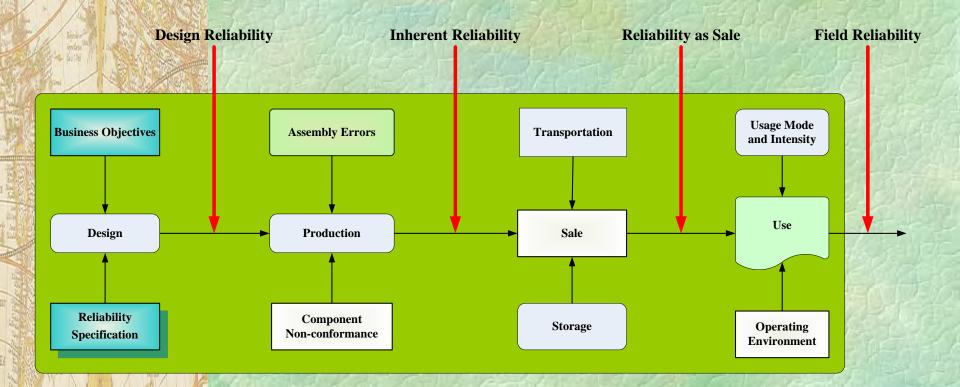
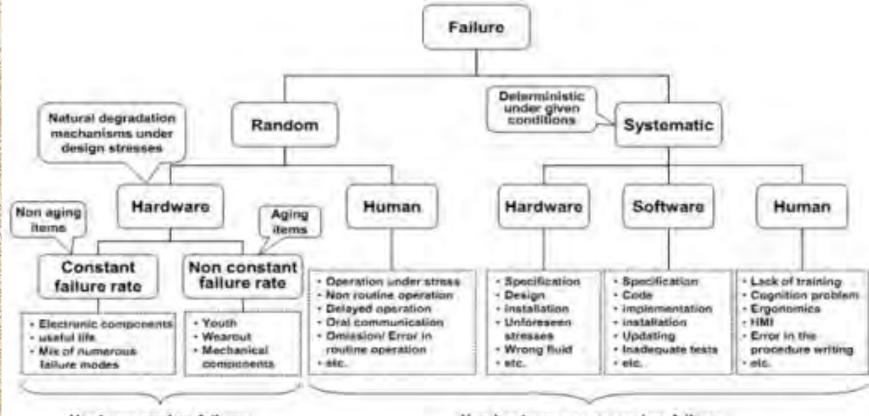

MANUFACTURING PHASE RELIABILITY TOOLS

Table 1-12: Analytical Tools that Can be Applied to Prevent Failures and Prove Reliability				
Item No.	Reliability Tools	Comments		
	To Prevent or Reduce failures			
1	Process Failure Mode, Effects, And Criticality Analysis:	Used on the manufacturing process before it is installed. Similar to Design FMECA.		
2 Nort	Statistical Process Control	Designed to ensure that the manufacturing process continues to produce products with no more than expected variation in the critical parameters. Often considered a test for determining the control of quality instead of reliability		
SW IN A	Analytical Tools to Prove Reliability			
1	Environmental Stress Screening Tests:	Also, known as Burn-in and Screening Tests . Tests to catch "infant mortality" failures. If the product is manufactured properly, these tests are not required. <u>Note</u> : These tests are also performed in the Design Phase such that early failures do not mask the true reliability. Unfortunately, these tests are sometimes used as the "final word." As a result, the screening may not be long enough and weak products may be provided to the customer.		
	Production Reliability Acceptance Tests	Also, known as Failure Rate (MTBF) Tests. Used to detect any degradation in the inherent reliability of a product over the course of production and to assure products being delivered meet the customer's reliability requirements and/or expectations (by testing a production lot and accepting or not accepting based on a sampling plan). Also, used to qualify new products.		
3	High Accelerated Stress Screening	Is a quality control activity used to maintain reliability during the production process		
4	On-Going Reliability testing (ORT)	Provides assurance that the product design reliability shall be sustained over time.		

PRODUCT FIELD RELIABILITY PERFORMANCE


Figure 1-30: Factors Influencing Field Reliability

FAILURE DETAILS AND CATEGORIZATION

Figure 1-31: Failure Classification by Cause [ISO/TR 12489, 2013]

Hardware random failures

Non-hardware or non-random failures

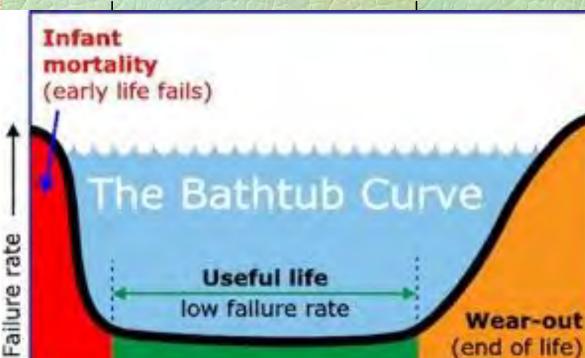
REPRESENTATION OF UNRELIABILITY

Figure 1-33: Selected Tasks for Improving Unreliability

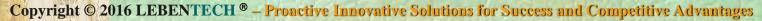
Indicators and Constraints

- Improving environment knowledge
- Establish process CTQ checkpoint
- Design for manufacturing capabilities
- Reliability metrics and balance scorecards
- Analyzing short term warranty | RMA data |

Time


Verification & Reliability Prediction

Begin to utilize:


- Industry and field data
- Accelerated Life Testing
- Reliability Prediction tools

Analysis of Wear-out Mechanism

- ALT [Test to failure]
- System modeling
- Long term data analysis
- Materials characterization

Source: Guest-internet.com/blog/improving-the-reliability-of-Wi-Fi-hotspots

AN APPROACH TO EVALUATE COST ASSOCIATED WITH UNRELIABILITY

Hypothetical Example Application

- **Figure 1-37 illustrates three critical components of medical device used for performing laser surgery.**
- The components are connected in series and failure of anyone of these will lead to a single point failure of the system.
- When a single point failure occurs the device will not be available to treat patients until repaired.
- Use the information provided in Table 1-17 to determine the cost associate with the unreliability of these components.

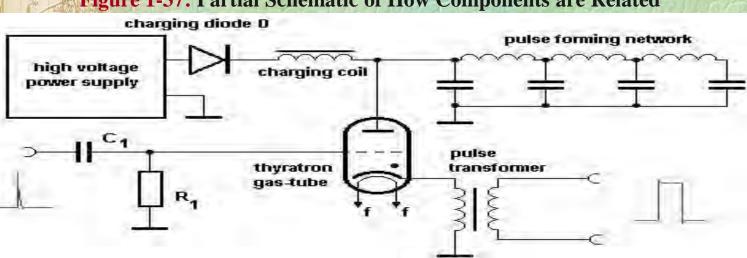


Figure 1-37: Partial Schematic of How Components are Related

AN APPROACH TO EVALUATE COST ASSOCIATED WITH UNRELIABILITY

	Reliabi	lity Block Diag Components	ram of	
Medical Device	Power Supply—	→Control Board	Thyratron Driver	Summary
Study Interval	35,040	43,800	52,560	8,760 Hrs / year
Number of Failures	1	2	3	1.15 Failure / Yr
MTBF	35,040	21,900	17,520	7,617 Hrs / Failure
Failure Rate	28.5 E-06	45.7 E-06	57.1 E-04	131.3 E-06 Failure / Hr

 $\frac{\text{MTBF}_{\text{TD}} = 52,560 \text{ Hrs} \div 3 \text{ Failures} = 17,520 \text{ Hrs} / \text{ Failure and the failure rate}}{\text{is the reciprocal of the MTBF.}}$

Hours / Failure = 8760 Hrs ÷ 1.15 Failures per year = 7,617.

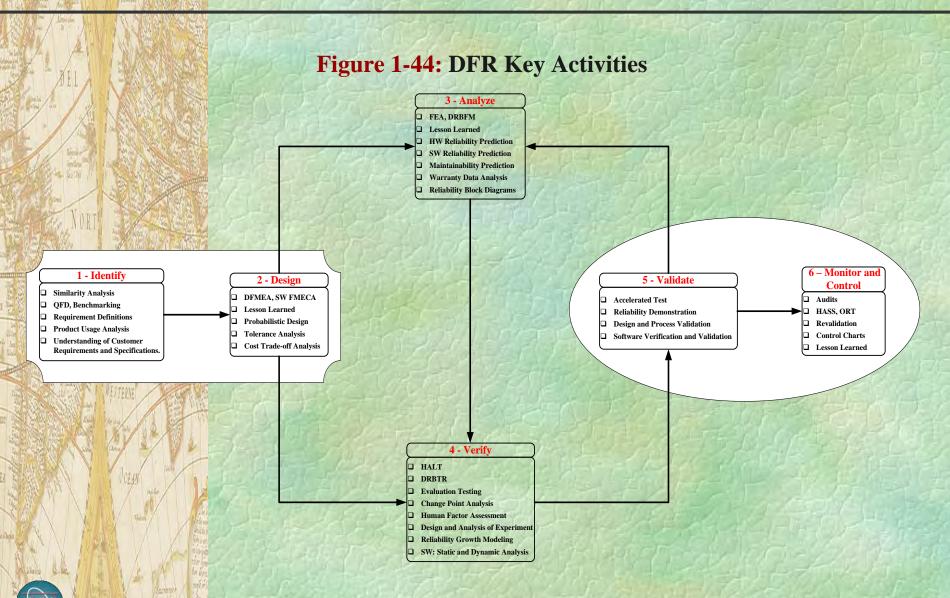

COST CATEGORIES IMPACT OF UNRELIABILITY

Table 1-20: Breakdown of Cost of Unreliability

Cost Categories	Cost Impact of Unreliability	
Direct Cost	Warranty Costs Field Repair Costs	
Indirect Replacement	Inventory Costs for Spares Product Service Indirect Costs	Visible:: Smaller but significant
Problem Solving Costs	Concession Costs Product Recall Costs Engineering Support costs Root Cause Investigation Costs	costs
Opportunity Costs	Customer Visit Travel and Leisure Expenses Lower Margins on New Jobs Impact of failures on Customers Lost Sales with Impacted to Customers	Hidden Large Business Risks
Long Term Business Costs Aggregate Costs to Company	Liability Legal Cost Lost of Potential Customers Impact to reputation	and Exposure

PRODUCT DESIGN FOR RELIABILITY APPROACH

PRODUCT DFR IMPLEMENTATION CHALLENGES

Table 1-23: Potential (Challen	ges RE May Encou	inter Implementing DFR
Challenges with Implementing DFR		Overcoming the Challenge	Key Points for Implementing DFR Activities
We are already good enough. Why do we need it?		Cost Justification	Start DFR activities Early in the process
Being early enough. Time to market/Rush to demonstrate so they skip steps		Management Buy-in	Reliability engineer's job is to lead coach the design team
Reliability engineers are tied up on current projects and new projects are starting without them		Voice of the Customer	Integration or Reliability and Quality Engineers with design teams
Getting the designers to understand so that they can drive the program		Education to Designers	Warranty Field data analysis [Both statistical and root cause analysis] needs to be fed back to both design and reliability teams
Culture – will it accept? How do you get management buy-in? Requires patience. Requires addressing concerns of management.		Ability to Measure Success [Metrics]	Reduce the number of tools in the toolbox, but use the remaining well. Neither all steps nor tools are necessary for all programs.
		Case Study Successful Demonstration.	

M2 - LEARNING OBJECTIVES

Participant Shall be able to:

- Distinguish between the different methods that can be used to predict reliability of their product.
- Gain understanding of how to develop a reliability allocation model for their company products.
- Utilize FMECA and FTA to identify critical components and sub-systems within their company's product.
- Acquire knowledge that enable participants to utilize PFMEA to establish process control, identify critical process and potential test areas where human performance deficiencies could damage or impact device performance.
- **Utilize DFMEA** to prevent potential failures, improve design weaknesses and **develop product** testing strategies.
- Gain knowledge of how to develop system model for company's product and analyze system for reliability
 - Gain knowledge of how to develop and implement a FRACAS system and integrate with CAPA process within their organization.
- Adapt | Implement | Improve

RELIABILITY REQUIREMENTS IN DESIGN

Determine Customer's Product Needs

- □ The concept/planning phase is the time to establish reliability goals and requirements that addresses the different exposures and characteristics during the product's life cycle.
- Determining customer needs is the basis for deriving operational performance reliability requirement and subsequent design requirements.
- Customer's needs are prerequisite to deriving performance reliability requirements.
- **These needs should be determined early in the C/P phase of the product development program, before large investment of time and resources are made.**
- Performance reliability requirements, in turn are the basis for design requirements, which should be defined before starting any design and development.
- Approach used to determine customer's need include: market surveys, benchmarking, life cycle planning and environmental characterization.

RELIABILITY REQUIREMENTS IN DESIGN

Developing Reliability Requirements:

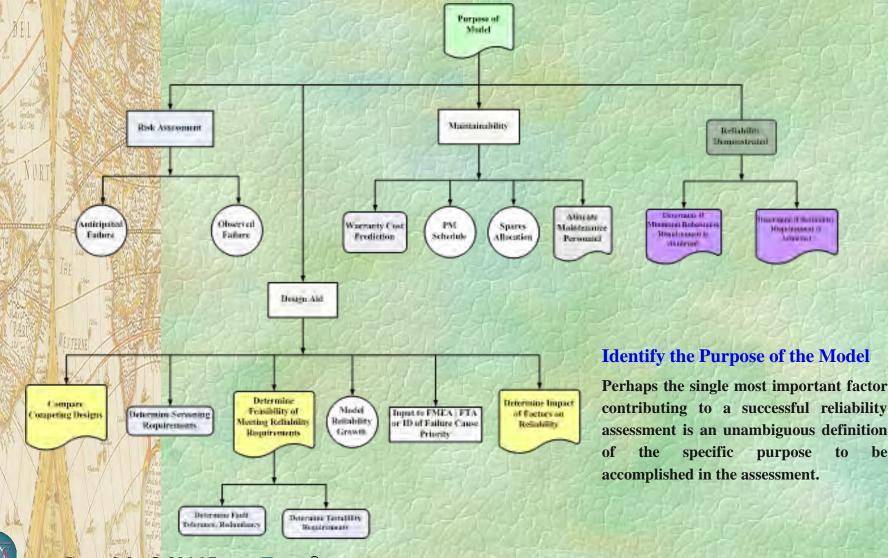
- Requirement stated should be realistic and achievable and then translate into design specifications.
- Developing reliability requirements for products and systems is a multistep process as shown in figure 2-2.
- The process includes a number of common tasks as summarized in table 2-1.
- □ Each step in the process is pertinent in selecting the level of reliability that drives the scope of the design oriented tasks necessary to meet customer's needs and expectations.

Figure 2-2: Reliability Requirements Development Process

Determine Customer Needs

Derive Product Level Design Requirements Allocate Product Level Requirements to Lower Levels

RELLABILITY REQUIREMENTS IN DESIGN


Customer's Performance Reliability Requirements:

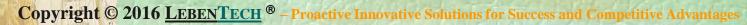
- Customer's need for a product are typically used to identify or derive the customer's performance requirements.
- Performance reliability requirements can be derived in one or two ways, depending on what customer needs are stated.
- □ If the customer's need is already stated as a recognized reliability requirement [e.g., MTBF] no further action is required, given that the need and the requirement are synonymous.
- On the other hand when the performance requirement is hidden, the basic definition of the need must be analyzed to derive any reliability requirements.
- Let's take for example a need stated as availability [function of both reliability and maintainability], or as a safety concern \no safety critical failure].
- Modeling and simulation is an effective techniques that can be used to determine a level of reliability, or a range of reliability, necessary to meet more general customer need or requirement.

SELECTED PURPOSES - RELIABILITY MODELING

Figure 2-3: Breakdown of Potential Reliability Modeling Purposes

SYSTEM LEVEL | SUB-SYSTEM DESIGN ANALYSIS

FMEA


A failure modes and effects analysis [FMEA] is an inductive bottom-up method for analyzing a system design or manufacturing process in order to evaluate the potential for failures.

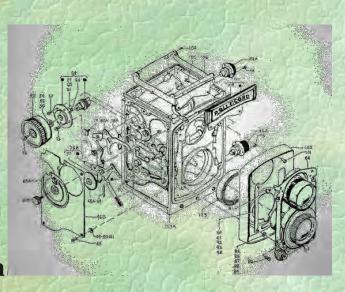
Can be described as a reliability planning tool that consist of a systematic group of activities intended to:

- **1. Recognize** and evaluate the potential failure of a product / process and its effect.
- 2. **Identify root cause of potential failure mode at a very fundamental level that is related to the underlying failure.**
- 3. Prioritize potential failures according to their risk.
- 4. Provides actions that could eliminate or reduce the chance of the potential failure occurring.
- 5. Providing a living document for use and for continuous reliability improvements.

Basic Types of FMEA

- Concept.
- **Design** [**DFMEA**].
- **Process [PFMEA].**
- **Gervice.**
- **Functional.**

USING FMEA AS THE BASIS FOR A RELIABILITY MODEL



A FMEA can be an effective tool in identifying specific failure causes that needs to be quantified in a reliability model. Figure 2-4 illustrates a generic approach.

PRODUCT DESIGN DEFICIENCY 1

The Product is Manufactured Properly but Poorly Designed.

Product not design for robust performance
 Excessive heat, vibration, noise
 Inadequate design life assumption
 Specified energy level is too low, too high.
 Actual stresses higher than design loads
 Material specification unsuitable for application

PRODUCT DESIGN DEFICIENCY 2

The Product Design Leads to Poor Manufacturing

- □ Is orientation, alignment important to function?
- Can the components be assembled upside-down or backwards?
- Are the engineering tolerances compatible with manufacturing capabilities?

Incorporate!

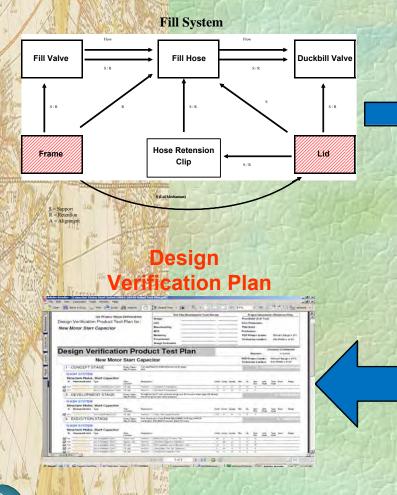
- DESIGN FOR Assembly [DFA]
- **Design for Manufacturing [DFM]**
 - **AS Part of Development Process**

EQUIPMENT FMEA APPLICATION

	Тесн	19110-28-7	FΝ	IEA Worksheet for	He	at Exchanger F		ne	tion				
Process Function	Potential Failure Mode	Potential Failure Effect	S ш >	Potential cause of failure	000	Current Process Control	Dut	R P N	Action	S E V	0 C C	D E T	R P N
Transfer heat from steam to gas.	Fouled exchanger.	Planned process shutdown	8	Dirty incoming fluids.	4	Monitor pressure drop.	з	9 6	None	8	4	3	9 6
		Process efficiency deteriorates.	6	Improper operating conditions.	3	None.	9	1 6 2	Control system.	6	2	4	4 8
	No pressurization.	Property of gas [steam] will be impacted causing loss of fluid ability to transfer heat.	8	Valve malfunction or failure.	4	Measure the mass flow of steam.	4	1 2 8	Monitor properties of steam.	8	2	2	3 2
	Tube leaking.	Pressure drop.	5	Chemical deterioration.	7	Pressure test.	6	2 1 0	Monitor input pressure loss.	5	з	3	3 0
			4	Process corrosion.	5	Visual.	4	8 0	None.	4	5	4	8 0
			7	Fatigue or wear-out.	3	None	9	1 8 9	Reliability analysis.	7	2	4	5 6
	Fails to open to allow the flow of fluid.	Shutting down of process	8	Valve malfunction or failure.	з	Monitor pressure drop	3	7 2	Pressure control system.	8	2	3	4 2
	Chemical corrosion	Tube degradation or failure which will lead to process shutdown.	8	Due to contact with process flow and erosion.	4	None	6	1 9 2	New inspection schedule.	8	2	3	4 8
	Does not heat fluid.	Loss of heating capability	8	Collapse or rapture of heat exchanger tubes.	8	None	8	5 1 2	Replacement schedule.	8	2	9	4 5
		Degradation of heating transfer capability.	6	Erosion corrosion.	4	None	7	1 6 8	Frequent inspection.	6	2	3	3 6
		Degradation of thermal performance.	6	Corrosion fatigue.	3	None.	9	1 6 2	New PM schedule.	6	2	3	3 6

FMEA APPLICATION IN HEALTHCARE SYSTEM

Table 2-8: Failure Mode and Effect Analysis (FMEA) of Dialysis Operation


System Function Specification	Potential Failure Mode Error	Potential Effects of Failure Error	с m с	Potential Causes of Failure Error	000	Current Desi Mitig		DET	ΖυΖ
						Method of Prevention	Detection Means		
Removes harmful waste and extra fluids from blood.	Patient loss of blood	Clotting of the hemodialysis circuit blood lines		Air in blood lines	No.	Monitored by determine activated clotting times	新国人民共	J.	1.10
	Sub-optimal treatment from hemodialysis	FH PARS		Low blood flow rate	K	Low dose minimum heparin	101 A 43	1C	2
		キンシー	21	Inadequate anticoagulation	1	Standard Anticoaglation	C. L. C.	S.F.	
		1 Fattor		The Party of	11	Heparin modeling		la C	4
			-46		100			\mathcal{F}	-
	Equipment failure	Treatment disruption Delays Possible harm	11	Disruption of electricity due to pow er failure	1	145715	X CL	14	1
		H LAND	N.	Improper treatment setup (Technician)	2		There is	4	-
		Hemorrhaging - leads to fatal error	TY -	Reversal of dialysis lines (Attention not paid to alarm)	51	们去了我们	1.35-1	12	5
	Contaminated	Haemolytic	14	Chloramines	Tell	Water	PAR LED	Pla .	-
Rentant Contract	Blood	Anaemia HIV	R	Dialysis membrane improperly reused	TA	Purification	Monitoring level of blood lines	7/	1
		20月1日		Use of disposable disk filters	10	Use of external transducer protector			1
Share and the first states	The Lot IF I		- which	Lack of monitoring	1.5	Disinfection after treatment			13
Name Charaf and a second	-2-1-	Cardiovascular morbidity	a la	Contaminants in water dialysate	A.	Properly designed and maintained w ater treatment system	AAMI Standard for quality assurance	1	No.
UCEAN /		- Friday -	100121	Air in blood	Carl-	1 the colour	31 J	475 0	61
				Flow of dialysate into blood due to fiber leak		TEP/AL	The star	14	
H X **/ //		Vomiting Nausea	A.	Heparin not rinse with 100 cc saline		Patient safety intervention	7-2-1-1-1	Je	

DFMEA INTERFACE WITH VERIFICATION PLAN

Figure 2-10: Design Improvement Plan

Functional Block Diagram

DFMEA

()		Potentia of Failur					Current D	esign Control							
Product Function	Potential Failure Mode	Local	End	< mus	Potential cause of failure	000	Prevention	Detection	DET	RPN	Action	SE Y	C	DET	RPN
Adequately clean dishes [Clean spec < 90]	Correct amount of water does not reach load during wath cycle	Nouzie ciogs	Consumer calls	5	Incorrect nozzle design	ó	1 - Prototype 2 - Wash pressure vs. gap analysis	1 - Dish washing test 2 - Home Test	4	120	Development of test pattern for loading flaxbility	5	1	1	5
		Wash arm does not spin	Poor wash performance	6	Inadequately design wash clearance	7	1 - Design Review 2 - Prototype	1 - Home Test 2 - Soil Testing	4	1 6 8	900	6	.3.	2	3
		Surging	Poor wash performance	7	Inadequate design detergent dispenser	2	Tolerance analysis of dispenser	1 - Horne Test	4	56	Test for detergent cup wash out	7	1	2	1
	Wrong wash cycle chosen by control system	Poor wash performence	Service call	4	tmproperly placed turbidity sensor	3	Design Review	1 - Cycle development testing	5	00	Cycle development testing using DDE	4	1	2	8
Provide adequate temparature for heating water	Temperature insufficient to adequately heat dishes	Heat not adequate for effective drying	Poor dry performence resulting from insufficient heat	4	Inadequate heater capacity	4	1 - Prototype 2 - Design Review	1 - Heater characterization test	8	1 2 8	Weibull performance analysis of different heater	4	1	1	4
and drying dishes	Water temperature does not reach correct level	Poor wash performance	Consumer calls	4	Inadequate heater capacity	4	Design Roview	1 - Bonch test 2 - Soil Test	3	1 2 8	Test to correlate loading flexbility	4	2	2	

To assure that a **compl**ete analysis has been performed, each component failure mode and/or output function should be examined for the following conditions:

- □ Failure to operate at the proper time
- Intermittent operation
- **Failure to stop operating at the proper time**
- **Loss of output**
- Degraded output or reduced operational capability

COFFEE MAKER PFMEA APPLICATION

Table 2-11: Failure Mode and Effect Analysis (PFMEA) of Coffee Maker Manf. Process

	<u>KIS</u>	<u>Leben</u> Te	<u>ECH</u>				PFME											
2							Process Potential Failure Mo	ode a	nd Effects analysis				Procedure #					7
Prepar													Revision: Revision: A					
Revise	Phase: Execution						oved by: Contact / Phone:						PFMEA No.					-
	umber / Revision Lev	ol:					Team:						Author:					
	ame / Description: Co					COR	reall.						Approved By:				—	_
1 until	une / Description. ee												Approved by.	A	ction Res	ults		_
Station Number	Description of Operation	Assembly	Potential Failure Mode	Potential Effect of Failure	C T Q	S E V	Potential Cause(s) / Mechanism(s) of	0 C C	Current Controls Detection / Prevention	D E T	R P N	Recommended Action	Responsible & Completion	Action Taken				R P
1		1 different	mode	orraidro	a	v	Failure	C	Decodori i rovenden	1			Date					N
1	Assemble thermostat and TCO to heater	To join / connect basic components of the heating assembly	1 - Bad thermostat used	1 - Coffee maker burn 2 - Does not turn off		8	 Bad joining of the hook to the thermostat 		None	2		Send a sample [Per AQL] to lab for evaluation						
			2 - Bad TCO used or TCO damaged during process	Coffee maker does not heat up		8	1 - Supplier send incorrect TCO 2 - No temperature regulating [Too much temperature from welding]	7	1 - Continuity testing 2 - Check rating with drawing	2	112	1 - Send a sample [Per AQL] to lab for evaluation 2 - Temperature be monitored over time [Use of Heat sensor]						
and and			3 - Bad Heater used	1 - Coffee maker does not turn on 2 - Bad brewing temp [No heat]		8	1 - No in process testing or inspection at station 2 - Operator lack training	4	1 - Continuity and hi-pot testing 2 - Insulation resistance test	2	64							
			4 - Incorrect TCO used	1 - Reduce life for application		8	 Incoming inspection not adequate Random check not done by line operator 	3	Work Instruction	5	120	1 - Line Supervisor verify component is correct 2 - Line operator do random check						
al-CAG			5 - Bad solder Joint formed	1 - lead can separate easily 2 - It may affect the flow of current 3 - Voltage drop may induce failure 4 - Coffee maker does not turn on [No heat]		8	Incorrect machine setting Operator move component during welding process A daterial not clean - Fixture worn and does not provide	4	None	9	288	1 - Training 2 - Machine adjustment monitored						
1			6 - In correct TCO placement distance	1 - Absorbed heat from warming plate an TCO life is reduced		7	rigid support 1 - No fixture used to ensure distance is controlled	3	Gauge	4	84						+	-
			7 - Incorrect location and adjustment of clip	Incorrect location of clip cause high pot failure and high temperature		2	1 - Inadequate work instruction 2 - Operator error 3 - Incorrect clip used 4 - Supplier place thermostat location mark in wrong location	4	Pictures in work instruction	5	40	1 - Check during incoming inspection 2 - Capability measurement data from supplier						100
2	Assemble second TCO and connection wire	To join / connect next TCO to complete path for current flow through heater	1 - Short Circuit	1 - Critical defect notified by all consumers 2 - Product will not turn on due to break in continuity of current		8	1 - Inadequate weld of the fuse [TCO] 2 - Improper working of welding machine 3 - No work instruction available	3	None	9	216	1 - Develop appropriate work instruction 2 - Perform capability study of machine						
			2 - Wire incorrectly connected	1 - Possible component damage 2 - Rework at next station		7	Operator error	4	Work instruction [With picture]	9	252							
a strain			3 - Incorrect gauge wire or wire type	1 - Incorrect resistance could affect performance characteristics 2 - Wire may burn up and utimately cause coffee maker to stop work		4	1 - Wire not appropriately labeled for identification 2 - Supplier send wrong wire 3 - Ineffective inspection	3	None	9	108	1 - Means of recognizing wire type						
a free			4 - Incorrect length wire	1 - Time lost in assembly 2 - Wire cannot reach next component		5	1 - No checking of length at incoming inspection 2 - Supplier send incorrect size 3 - Warehouse supply incorrect wire	4	None	9		1 - Check list for key parts						
			5 - High pot failure	1 - Product will have to be reworked or scrapped		7	1 - Operator error 2 - No work instruction		Machine set up to recognize failure	1		1 - Illustration in work instruction 2 - Training for operation						-
21	Pull Test	Apply a specify force to verify the strength integrity of the joint	1 - Incorrect reading	 Make bad decision based on bad calibrated machine 		2	1 - Machine [Instrument] need to be calibrate	4	None	9	72	1 - Calibrate machine						1
1.16		screnger integrity of the joint	2 - Joint destroyed	1 - Rework		8	1 - Too much force applied	3	1 - Work instruction	2	48				+		+	
4			3 - Joint separate later when	1 - Applied force not adequate to		8	1 - Insufficient pull force applied	4	1 - Work instruction	9	288						-	
14			stress is applied	test joint integrity			2 - Poor welding	L									+	
1								I		I	0				\vdash	_	+	
City Martin			unowe.					-	and the second se	-	v							

SYSTEM LEVEL DESIGN ANALYSIS - FMECA

FMECA Analytical Model Continued

- Most of the failure rates applied is taken from the NPRD-95 Manual or taken from other data source.
- Some of the values associated with the failure mode ratios are taken from the FMD-97 database developed by The Reliability Information Analysis Center [RIAC].
- Company R&D engineers will also provide some of these values.
- This approach also utilizes the following formula for Item Criticality within a particular severity level:

$$C_{r} = \sum_{n=1}^{J} \left[\beta \alpha \lambda_{p} t\right]_{r}$$

Where:

- C_r = Item Criticality.
- **n** = **Represents** the current failure mode of the item being analyzed.
- **j** = **R**epresents the number of failure modes for the item being analyzed.

FMECA APPLICATION IN PRODUCT DESIGN

Table 2-17: Example of DA Form 7612, FMECA Worksheet Using Qualitative Rankings

	System: AC plant	station of the second second							Date: Dec	2011	
	Part name: AC com	pressor							Sheet: 2 of	56	
	Reference drawing:	XX/46565/xx							Compiled t	y: XX	
	Mission: Compress according to the hea		1.1			_		_	Approved I	by: XXX	
Item number	ltem/functional ID	Potential failure modes	Failure mechanism	Severity	Failure rate (Å _p)	Failure effect probability (β)	Failure mode ratio(a)	Operating time (t)	Failure mode criticality number (Cm)	ltem criticality number (ΣC _m)	Remark
110.0	Compress refrigerant between: 5-10 bar	No compression	Motor winding burnt, no power, relay malfunctioning,	4	6.24 × 10 ⁻⁶	1	0.5	104	0.0312	0.0312	
	At 50-80 °C	1	mechanical failure of								
	Give noise and vibration less operation <80 dB and <6 mm/s		compressor, coupling failure								
		Low compression <5 bar	Gas leakage, capacity control valve malfunctioning, expansion valve choked	3	1.2 = 10 ⁻⁴	1	0.15	104	0.18	0.88	
		High compression >10 bar and >80 °C	Air ingress into system, reduced cooling in condenser and relay faulty	3	2.8 × 10 ⁻⁴	1	0.25	104	0.7		
		Abnormal noise and vibration >80 dB and >6 mm/s	Defective bearing, coupling failure, deteriorated SV mounts	6	9.3 × 10 ⁻⁴	i	0.1	104	0.93	0.93	

Source: Reference 7

SIMILAR ITEM ANALYSIS

Example Application of a Similar Item Analysis

- A new computer product is composed of a processor, a display, a modem and a keyboard. The new product is expected to operate in a 40 °C environment.
- Data on similar components was located and is shown in the second column of table 2-19.
- The similar item data is for a unit operating in a 20 °C environment. What MTBF can be expected for a new system if a 30% technology improvement is expected?
- Each component MTBF is corrected for the change in temperature of 20 °C to 40 °C.
- Technology improvements were also included and the product MTBF is calculated using the expression:
- **MTBF**_P = $\Sigma 1/\lambda_i$

Where,

- $MTBF_P = Mean Time Between failure of the product$
 - $\lambda_i = Failure$ rate of the i component.

WORKED EXAMPLE APPLICATION

Table 2-19: Reliability Analysis of Similar Item

ltem	Similar Data MTBF (Hrs)	Temperature * Factor	Improvement Factor	New Product MTBF (Hrs)
Processor	5,000	0.8	1.3	5,200
Display	15,000	0.8	1.3	15,600
Modem	30,000	0.8	1.3	31,200
Keyboard	60,000	0.8	1.3	62,400
System	3,158		and a lite	3,284

* Temperature conversion factor source "Reliability Toolkit: Commercial Practices Edition", page 176

 $\Box 5000 * [0.8 * 1.3] = 5200 | 3158 * [0.8 * 1.3] = 3284$

MTBF_P = $\sum \frac{1}{\lambda_i} = \frac{1}{5,000} + \frac{1}{15,000} + \frac{1}{30,000} + \frac{1}{60,000} = \frac{1}{0.00031666} = 3158$

WHAT IS RELIABILITY PREDICTION

Overview

- Purpose: The general purpose of reliability prediction is to provide guidance relative to the expected reliability for a product as compared with the customer's need, expressed or implied, for the product.
- The utilization of prediction is a means of developing information for design analysis without actually testing and measuring the product capabilities.
- Prediction provide an array of benefits to product development, including:
 - 1. Determining the feasibility of a proposed product's design reliability.
 - **2.** Comparison of predicted reliability to the product reliability goals/objectives.
 - 3. A means of ranking or identifying potential reliability design problem areas.
 - 4. Evaluation of alternative design, parts, materials and processes.
 - 5. A quantitative basis for design trade studies without resorting to testing.
 - **Timing:** It is strongly recommended that early prediction be done in the product planning/concept phase.
 - The process should be continue throughout the design process and, being updated as more detailed design information becomes available.

WHAT IS RELIABILITY PREDICTION

Table 2-20: Reliability Hierarchy Prediction Listing

when Item I	No. Level	Example	Phase	Suggested Technique
NORT 1	- System or Product	- Computer Product	- Conceptual Design	Similar Item Part Count
2	- Assembly or Component	Processor Assembly	- Early Design	 Similar Item Part Count Reliability Physics
THE 3	- Circuit or Part	• Microprocessor Part	- Detailed Design	 Stress Analysis Reliability Physics Test Data

RELIABILITY PREDICTION APPLICATION

Reliability Prediction of Electronic Systems

Many reliability models are available for different electronic components in different handbooks and guides like MIL-HDBK [2], PRISM [3, 4] and others. There are two methods for the estimation of the reliability of electronic systems namely Parts Count Method and Parts stress Method

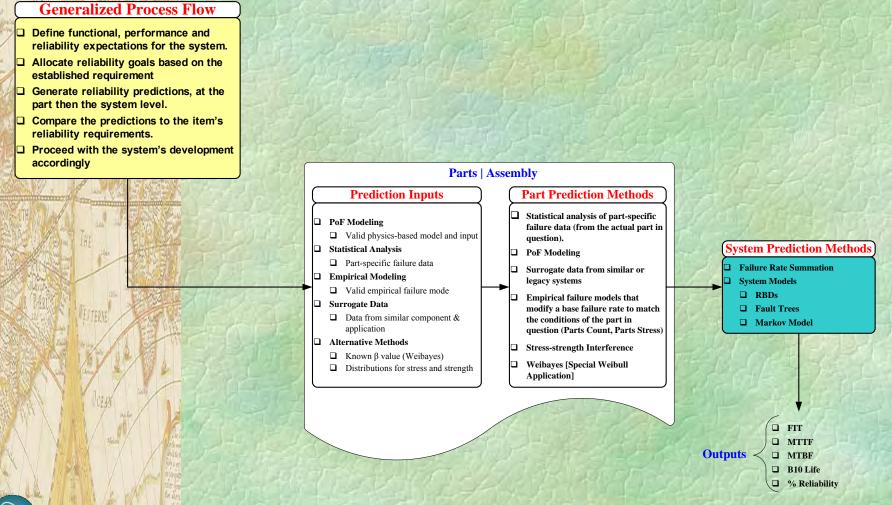
Parts Counts Methods

Mathematically the total failure rate for a system based upon the Parts Count method can be expressed as (as given in MIL-HDBK-217F).

$$\lambda_{\rm E} = \sum_{i=1}^{n} N_i \left(\lambda_{\rm g} \pi_{\rm Q} \right)$$

Where:

- $\lambda_{\rm E}$ Total equipment failure rate per 10⁶ h
- λ_{g} Generic failure rate for the ith generic part
- π_Q Quality factor for the ith generic part
- N_i Quantity of the ith generic part
- n Number of different generic part categories in the equipment.


Table 2-22: Failure Modes of Different Electronic Components

Component	Faihtre causes	Failure modes	Probabilities
Resistors			
Fixed	High current or voltage stress	Open circuit	0.31
		Parameter change	0.66
		Short	0.03
Variable resistors	Fabrication defects	Open circuit	0.53
		Erratic output	0.4
		Short	0.07
Capacitors	High voltage stress		
Electrolyte	Reverse polarity connection	Open circuit	0.35
capacitor		Short circuit	0.53
Tantalum capacitor	Temperature may change the capacitance	Excessive leakage	0.1
Ceramic capacitor	Distortion in analog signals	Parameter change	0.02
Inductors	High current stress		
	Weak insulation	Insulation distortion	0.7
	Sudden change in current	Open winding	0.3
Relays	Heat generation due to high current	Contact failure	0.75
Electro-mechanical	during faulty situation	Open coil	0.05
	the second second	Other	0.25
Semiconductor devi	ces		
Diodes	High current stress	Short circuit	0.1
		Open circuit	0.2
	High reverse voltage	High reverse current	0.7
Transistors	Electrostatic discharge	Low gain	0.2
		Open circuit	0.3
	Dislocation in silicon	Short circuit	0.2
		High leakage collector base	0.3

RELIABILITY PREDICTION TECHNIQUES

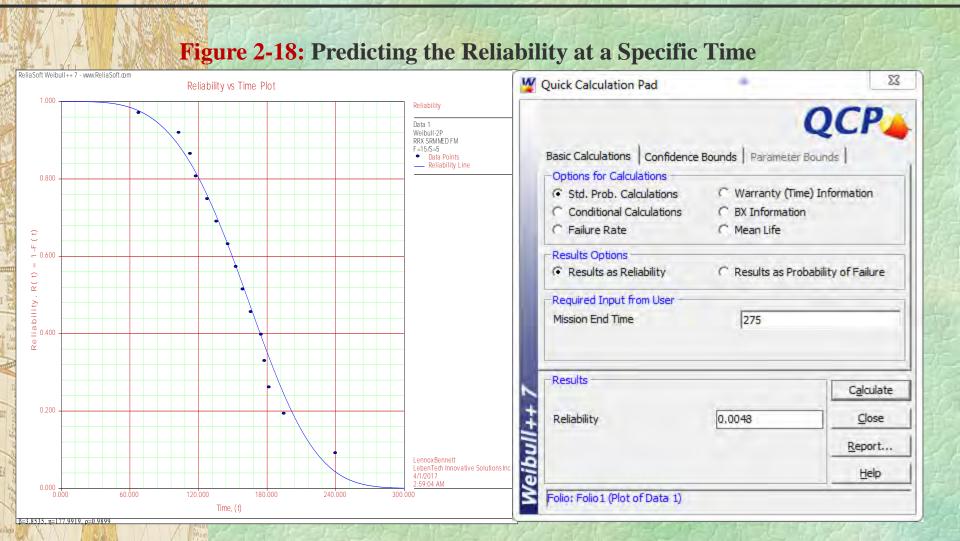
Figure 2-13: Graphical Representation of Reliability Prediction Process

PARTS COUNT RELIABILITY PREDICTION

Table 2-25:	Communication	Product Summary	Failure	Rate Data
--------------------	---------------	------------------------	---------	------------------

Part Number	Subsystems	Failure Rate (FPMH)	MTBF (Hrs.)	Unreliability	
RP0752-562	Miscellaneous Hardware	11.0158	9.08E+04	0.6152	
RP1070-562	Battery Board ASM	5.219	1.92E+05	0364	
WZ0059-562	Lithium Battery	0.0023	4.27E+08	0.0002	
RP1550-562	Controller Board ASM	135.8726	7359.8355	1.0	
RP0224-562	GPS Board ASM	43.74673	2.29E+04	0.9775	
RP2551-562	Transmitter Board ASM	158.5077	6308.8418	1.0	
RP0250-562	Battery Board ASM	3.8968	2.57E+05	0.2867	
RP5005-562	Enclosure Assembly	4.87091	2.05E+05	0.3445	
RP2010-562	UI Board ASM	42.1241	2.37E+04	0.9741	
RP5008-562	Internal Tx Antenna	7.4207	1.35E+05	0.4745	
Total	E HEREIT	2.34 E-09	4.28 E+08	2 40 ESK	

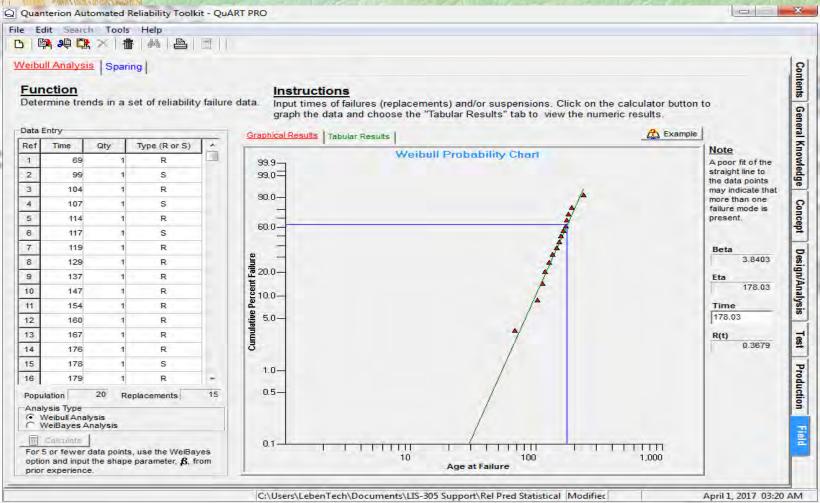
Calculate Reliability for 10 Years Service Life: $R = e^{-\lambda (t)} = -e^{-2.34(10)} = 0.9999 = 99.9\%$



PERFORMING PREDICTION USING SOFTWARE

Figure 2-16: Electronics Reliability Prediction Using Software Application

File Home My Portal 2 Add Top Level Item + 2 Add Same Level Item + Add Item	Project Insert Ven	Help System Her System Her Ingeneric Ultrary O Update 1 Local Component	ocal Compon	10	El Predict Complete Complete Provension Marchage		Calo.Aste					
× +	1										Pty Existal	
Current Project	13 0/ 13			System Hier	ardha -				Properties		Reliability Web Rotes	
Filter based on creator		A de la constante	10	Desilies	and the		Connection Failure Rate	HTBF	Properties Derating Ho	del		
d 🖂	Name	Category	a	Derating	Quantity	romire state(t=tit)	Connection railine Rate	Pillor	Properties	Values ^		
Project I	E Telcordia SR-332 Secre 3	Telcordie SR-332 Issue 3			3	607.7869 FITH	4. C	1.8453E+08 hrs	E General			
Prediction Folios	PluCModule	Riod:			1.	47,7960		2,09228+07	Name	Letter Le		
-Maria	Capacitor	Capacitor			1	13.5384	+	7.3864E+07	D	And and a second		
Attachmente	IC, Microcostroller	IC, Microcontroller			1	34,2578		2.9191E+07	Part Number			
	🕀 🇊 User Interface Module	Block			1	51.3267		1.94635+07	Albernate Part Number			
	TC, ROM/PROM/EPROM	IC, ROM/PROM/EPROM			1	5.5316	τ.	1.8078E+08	Revision			
	1C, Microcontroller	IC, Microcontroller			1	34,2576	÷	2.91918+07	LCN			
	- Connector	Connector			-	4.0462		2,4714E+08	Reference Designator			
	inductor	Inductor			1	7.4913	T	1.3349E+08	Supplier			
	9 Vessil	Blodt.			1	505.3477	-	1.55725+08				
	Rotating Device Optical Assembly	Rotating Device Block				\$08.3477 \$3186	-	1.9672E+00 3.1391E+09	Description			
	O Octo-Electronic	Opto-Electronic			1	0.3156	-	3.13915+09	1 American			
	University of the second	ALCO DECIDE.				-3449		3.1391.197	Function Description			
									Quantity	1		
									Analyst	5 E		
									Compiled By		F	_
									Approved By		Cet Notes for Active Item	
									Coniments		Automatically retrieve notes	
									Steady State Generic	0.2500	Messages	
									Failure Rate	LED/LC	7) Actions	
T Automation									194	D +	- Martine	
Current Project									Quality Factor	3.0000	d Uvert	-
Project Lat	-								Quality	Level 3 -	VE_ Reliability Web Notes	
	< .		-						🖶 Temperature Fucks	0.4247 🗸		
17. Keller Prikherski eber Tarbits	ocuments Finissiof(Vive WSRapository).in	Artice Project Design								-	Logged in as: Lennox Sennett G	

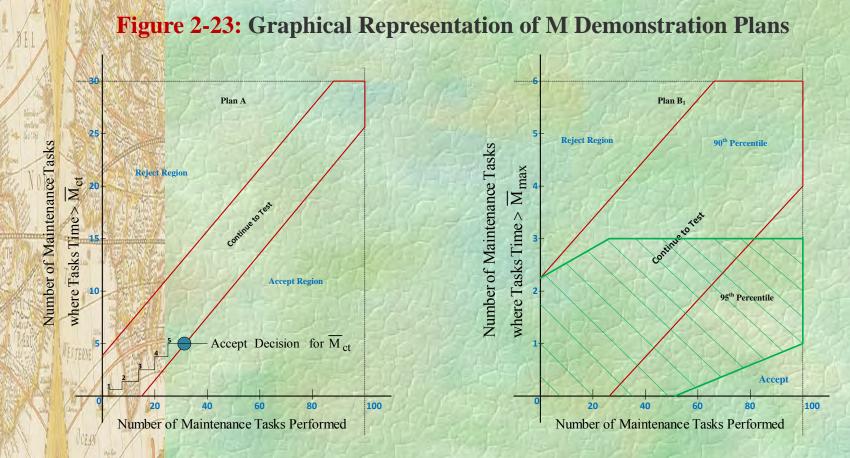

STATISTICAL ANALYSIS EXAMPLE

STATISTICAL ANALYSIS EXAMPLE

Figure 2-20: Weibull Probability Plot of Failure Data – QuART PRO Software

MAINTAINABILITY EVALUATION OF PRODUCT DESIGN

Maintainability Consideration in System Design


- Maintainability Design Evaluation is concerned with analyzing the maintenance implications of a proposed design and providing timely feedback to the design engineer.
- □ When this approach is applied to evaluate the design for maintainability; the <u>applicable</u> design criteria established in Appendix C of MIL-STD-470A will be used as the basis for evaluating the design for maintainability.

Human Factors	Replacement Capability	Simplification
Design for Reliability	Mating and Connection	Good Visual Indicator
Accessibility - Easy Access to Serviceable items	Automate Fault Detection and Isolation (BIT)	Use of Tools and Test Equipment
System Testability	Reduce Number of Components in Final Assembly	Modularization
Standardization	Interchangeability	Mistake Proofing

Table 2-32: Considerations in Design for Maintainability

MAINTAINABILITY EVALUATION OF PRODUCT DESIGN

Two sequential test plans were used and are identified herein. An "Accept" decision is reached when the test data indicates that the Mct/MTTR requirement of < 30 minutes is achieved. The graphical representations of the plans are provided in Figure 2-23.

SOFTWARE RELIABILITY PREDICTION

Software Reliability Growth

A software reliability growth model mathematically summarizes a set of assumptions about the phenomenon of software failure.

$$\lambda(t) = \lambda_0 e^{-(\beta t)}$$

Where:

 $\lambda(t) =$ Software failure rate at time t (failures per CPU second)

- $\lambda_0 =$ Initial Software Failure Rate
- t = CPU execution Time (seconds)
 - $B = B \frac{\lambda_0}{W_0} (\text{decrease in failure rate per failure occurrence})$

Where:

B = Fault reduction factor (default = 0.955)

 W_0 = Initial number of faults in software program per 1,000 lines of code

SOFTWARE RELIABILITY PREDICTION

Example Application: Estimate C Software Reliability

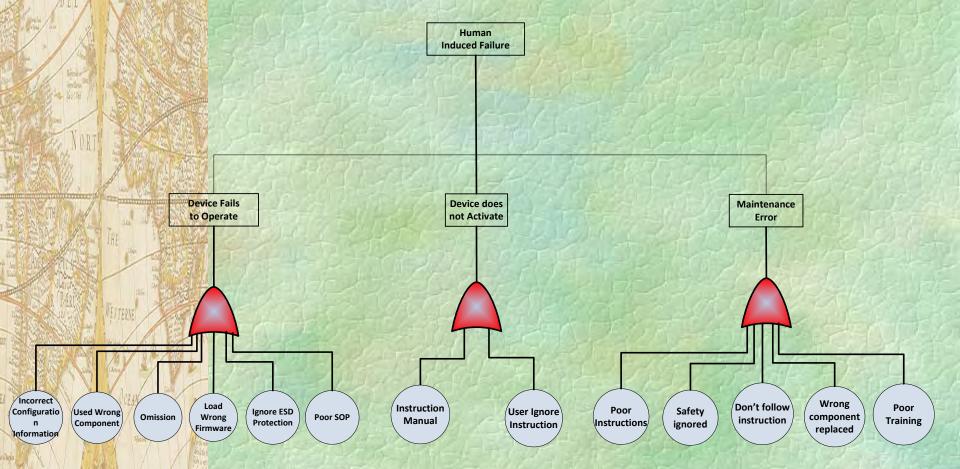
Estimate the initial software failure rate and the failure rate after growth testing for 40,000 seconds of CPU execution from time at 3 MIPS. The software is a 25,000 line C program.

Solution

- \square R_i = 3 MIPS = 3,000,000 instructions/sec
- **G** K = 4.2×10^{-7}
- \square W_o = (6 faults/1000 lines of code) (25,000 lines of code) = 150 faults
- **I** = (25,000 source lines of code) (4.5) = 62,500 instructions

 $\frac{(3,000,000 \text{ inst./sec})*(4.2 \times 10^{-7})*(150 \text{ faults})}{62,500} = 0.003024 \text{ failures per CPU second}$

$$\square \beta = B \frac{\lambda_0}{W_0} = (0.955) \left(\frac{0.003024}{150 \text{ faults}} \right) = 1.92528 \times 10^{-5}$$


 $\Box \lambda(40,000) = 0.003024 \text{ e}^{-(1.92528 \text{ x } 10.5 \text{ failures/sec})} (40,000 \text{ sec}) = 0.0013999 \text{ failures/CPU second.}$

 $\square_{\lambda_0} =$

HUMAN RELIABILITY PREDICTION

Figure 2-25: Fault Tree of Human Induced Failure of Communication System

ALLOCATING RELIABILITY TO A SYSTEM

Table 2-35: Reliability Allocation Calculation

1 :54			AGREE	APPORTIONM	ENT								
System Reliability Requirement = 0.95%													
	Beacon Subsystem Name No. Modules Complexity k, Importance Operating Time Allocated No. Modules Complexity k, Factor w, [T, Hrs] MTBF [0, Hrs] Allocated Reliability												
1 Mar 1	We a Miner Mine		The second				States 1						
1 14 1.16	Subsystem 1	X		0.5	87600	69166935.8	0.998734301						
Stark.	NAS STREET	X	1	0.5	87600	69166935.8	0.998734301						
140 140	The Charlenter of the	X	10		87600	13833387.16	0.993687503						
15 Non 1		X	3	1	87600	46111290.53	0.998102052						
The W	TO REAL PROVIDENCE	X	I the large		87600	138333871.6	0.99936695						
1 24 2		X	5	0.2	87600	5533354.864	0.984293392						
A BURN	NO DEPARTURA CORT	Contraction of the party	1 1 3 - 10	The second second									
2	Subsystem 2	X	1	1	87600	138333871.6	0.99936695						
1.50	C -de WARE W	X	12	0.33	87600	3804181.469	0.977235812						
1.000	and the second second	X	3	1	87600	46111290.53	0.998102052						
in the second	AUDA ANTA	X	1	1	87600	138333871.6	0.99936695						
y 111	Contraction Contraction	X	5	0.2	87600	5533354.864	0.984293392						
1	のの変要の			and the second second	1 1 1 1	Left of Men							
3	Subsystem 3	x	1	1	87600	138333871.6	0.99936695						
	PERSONAL PROPERTY AND	X		0.65	87600	89917016.54	0.999026243						
(Likes	AN 28 PERSONAL PROPERTY AND	A CONTRACTOR OF THE		11 11 11		And the lot in	the second second						
THE 4	Subsystem 4	P LEDME	122010	A REPORT	17-2-19	14(L+ - 7	47181 220-						
Han	10 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -		1 - 1 - 1 - 2 -		K/PEIL.								
1	HAR PART STORE -				E ELST HU								
5	Subsystem 5	x	36	0.2	87600	768521.5089	0.892271252						
III.	In the second second		100	1 2. 1	01 312		1 1 to Sunda						
N =	1 Carlos May		81		SALE INF. MI		A Start St						
1		- 17 / 20 - 10		33-77-1 32	A line and	E Start							
	11. LAWEL with the	and the set of the set		and the second second									

Importance factor for a subsystem is defined as the probability of system failure if this subsystem fails. If equals 1 the subsyem must operate successfully for the Nexcimer system to operate success fully. If equals 0 then failure of the unit has no effect on system operation.

Looking at coverage the probability of failure for Safery Modume is 1/5 = 0.2 | Probability of failure for Firing Control = 1/5 = 0.2. Loking at dependent events P(A and B) = P(A) * P(B?A) = 0.2 * (0.2/0.02) = 0.20

MTBF for Subsystem_i =
$$\theta_1 = \frac{Nw_i T_i}{k_i \{-In R(T)\}}$$

$$R_i(T_i) = e^{-(T_i / \theta_i)}$$

ALLOCATING RELIABILITY TO A SYSTEM

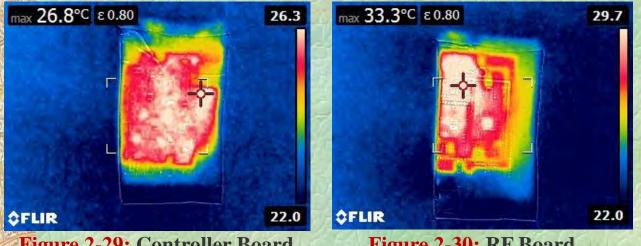
Elements	Intricacy Factor (1-10)	State-of- the-Art (1-10)	Operating Time (1-10)	Environ- ment (1-10)	Weighting Factor (Wfk)*	Percent $C_k = W_{fk} / \Sigma W_{fk}$	Element Failure Rate (C _k x500x 10 ⁻⁶ /Hr.)	Element Allocated MTBF** (Hrs.)
Antenna	2	3	10	5	300	.06	30x10 ⁻⁶	33,333
Transmitter	5	5	8	5	1000	.21	105x10 ⁻⁶	9,525
Receiver	5	5	8	5	1000	.21	105x10⁵	9,525
Modem	5	3	5	5	375	.08	40x10⁻⁵	25,000
Processor	1	4	5	5	100	.02	10x10 ⁻⁶	100,000
Input/Output	6	5	10	5	1500	.30	150x10⁵	6,667
Switch Matrix	5	3	5	5	375	.08	40x10 ⁻⁶	25,000
Patch Panel	2	2	5	5	100	.02	10x10 ⁻⁶	100,000
Lan/Beacon	2	2	5	5	100	.02	10x10 ⁻⁶	100,000
Misc. (Cable,	1	1	5	5	25	.005	3x10 ⁻⁶	333,333
Conn)								
TOTALS	-				4875	1.005	503x10 ⁻⁶	1,988

Figure 2-36: Feasibility of Objective Allocation Technique

Note: *W_{fk} = Intricacy x State-of-the-Art x Operating Time x Environment | ** MTBF = 1/ element failure rate

Source: RiAC Blueprint of Reliability

PRODUCT THERMAL DESIGN ANALYSIS


Thermal Analysis

- Temperature is one of the most important influences on reliability. Although temperature effects are usually associated with electronics, the reliability of mechanical components is also affected by temperature.
- By conducting thermal analysis, the designer can determine heat transfer path and modes, temperature extremes experienced by individual components and parts, and the impact of thermal shock caused by rapid change in temperature.
- □ In performing the analysis, the designer may find that even with reasonable cooling provisions and optimum placement of components and parts, the temperature encountered by the product and its constituent part make the reliability requirement technically or economically infeasible.

PRODUCT THERMAL DESIGN ANALYSIS

The figures below illustrate the thermal image for the Controller board and RF board respectively from a communication device. The maximum temperature for the controller board is 26.8°C and 33.3°C for the RF Board

Figure 2-29: Controller Board

Figure 2-30: RF Board

A FLIR-E63900 was used for the measurement. Ambient temperature condition was 23 – 25°C with power supply set to 7.5 VDC and the device was operating for four days. Communication frequencies of 121.5 MHz and 243 MHz were active for this operation, and the GPS activity was also active but no signal was applied to GPS. As can be seen in the illustration the maximum operating temperatures are below the ambient temperature of 55°C.

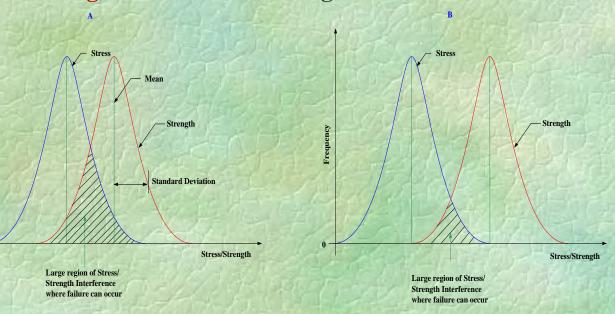
APPLICATION OF WORSE CASE ANALYSIS

	Table	2-42:	Data for	Worse	Case Analy	vsis Ca	lculations
1.14			2000101	TOIDE	Case I IIIa		

P. Constitution	Bias	(%)		
Parameters: Capacitance	Negative	Positive	Random (%)	
Initial Tolerance at 25 °C			20	
Initial Tolerance at (-20 °C)	28	T/-36-	2 part profile	
Initial Tolerance at (+80 °C)	1	17	道的社会	
Other-Environments (Hard Vacuum)	20	2/1-1-13	TOTAL	
Radiation (10KR, 10 ¹³ N/cm ²)	145	12		
Aging	PITTE	2/+	10	
Total Variation	48	29	经办法 计表 之	

Where:

Worse Case Minimum = - 48 – 22.4 = -70.4%


Worse Case Maximum = + 29 + 22.4 = +51.4%

Worse Case Minimum Capacitance = 1200 μF – 1200 μF [| -.0.48 | + 0.224] = 355.2 μF

Worse Case Maximum Capacitance = 1200 μF + 1200 μF [| + 0.29 | + 0.224] = 1816.8 μF

It should be noted that quantifying the contribution of environment effects on component variability is a critical step in the development of a Worse Case Analysis. Reference 5 provides additional details.

- □ An example of a strength as a function of time is the fatigue properties of the material. The fatigue properties pertain to the strength degradation over time.
- At time = 0, the probability of failure is the interaction of the stress and the strength distributions, as illustrated in figure 2-38.
- The calculation of the normally-Distributed Stress and Strength Distribution is:
- $\sqrt{\sigma_x^2 + \sigma_y^2}$ $\Box Z = Standard Normal variant (i.e., the number of standard deviations from the normal standardized distribution).$

Figure 2-38: Stress-Strength Interference

STRESS-STRENGTH DESIGN CONCEPTS

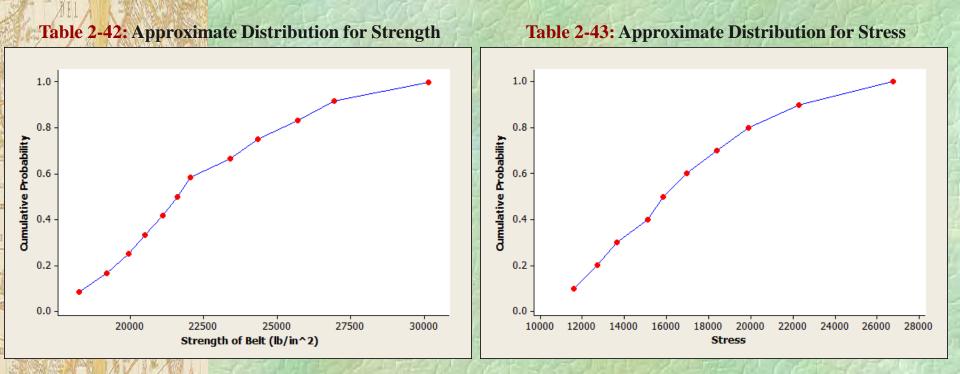
High Strength for Increased Reliability and Safety

- In general maintaining an inherently low product failure rate is essential to a product's ability to provide high reliability and high safety.
- To achieve low failure rate a product must provide "high strength". The product's ability to withstand the stresses such as heat, chemicals, and vibration that cause failure, can be defined as its strength.
- **The design concept of strength and its relationship to failure rate is as follows:**
 - o When stress exceeds strength a failure occur
 - The lower the strength, the higher the failure rate
 - The higher the strength, the lower the failure rate.
- **The chance** of stress exceeding strength, thus resulting in a failure is related to the "interference area" between the curves.
- Figure 2-31 illustrates the concept that a failure occurs when some stressor or combination of stressors exceeds the associated strength of the product

Example Application

- Several machine tool drives were tested experimentally under identical operating (cutting) conditions. The stress induced in ten belts were found to be 22,300, 11,600, 15,850, 19,900, 13,650, 16950, 26,750, 12,700, 18,400 and 15,100 lb/in².
- The value of strength found by testing twelve of the belts used in the machine tool drives were: 21,100, 26,950, 19200, 30150, 22050, 24350, 18250, 25700, 23400, 19950, 21600, and 20500 lb/in².

Find the reliability of the belt drives.



Example Application

Table 2-46: Stress- Strength Data

	Strengt	h Data	Representation of Stress-Strength	Stre	ess Data
No	Strength (lb/in ²)	Cumulative Probability	Stress Strength Diagram	Strength (lb/in ²)	Cumulative Probability
1 1	18250	0.083	ここであることもので	11600	0.1
2	19200	0.167	Stress	12700	0.2
3	19950	0.250		13650	0.3
4	20500	0.333		15100	0.4
1 the STUP	21100	0.417	Strength	15850	0.5
6	21600	0.500		16950	0.6
7	22050	0.583		18400	0.7
8	23400	0.667		19900	0.8
9 Esterve	24350	0.750		22300	0.9
10	25700	0.833		26750	1.0
11	26950	0.917	5,5	- ALTER	CHE THE
12 th	30150	1.000	Interference Area	119 / / /	11-1- 7-185

Table 2-44: Comparing Probability Pots of Strength for Normal and Lognormal Distribution

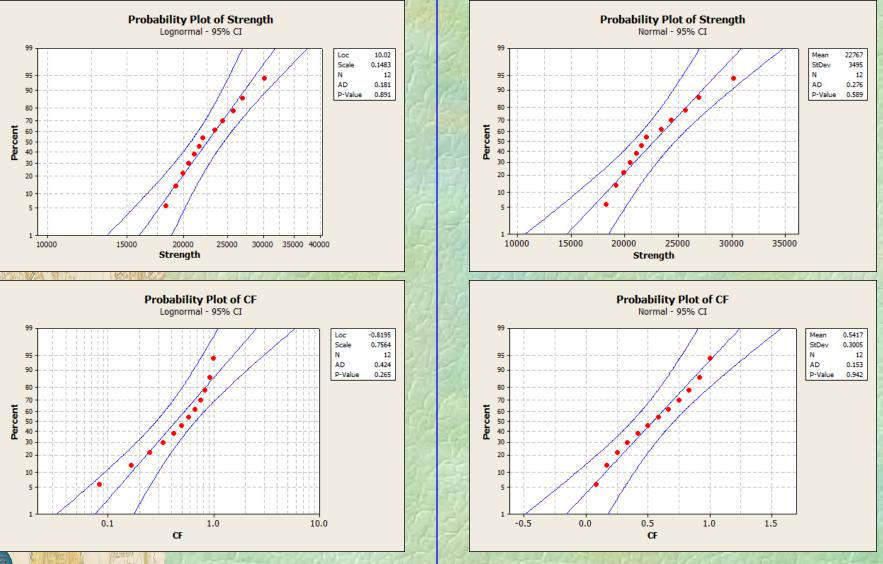
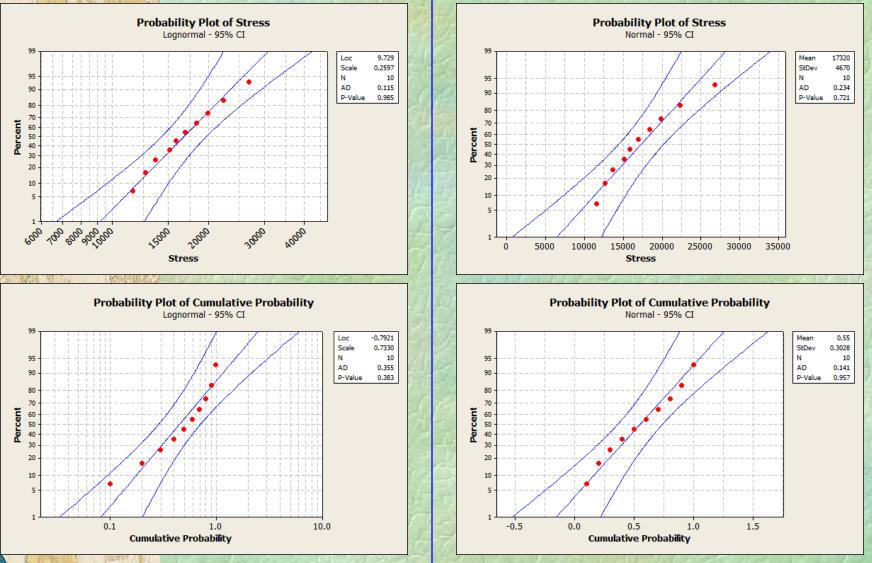
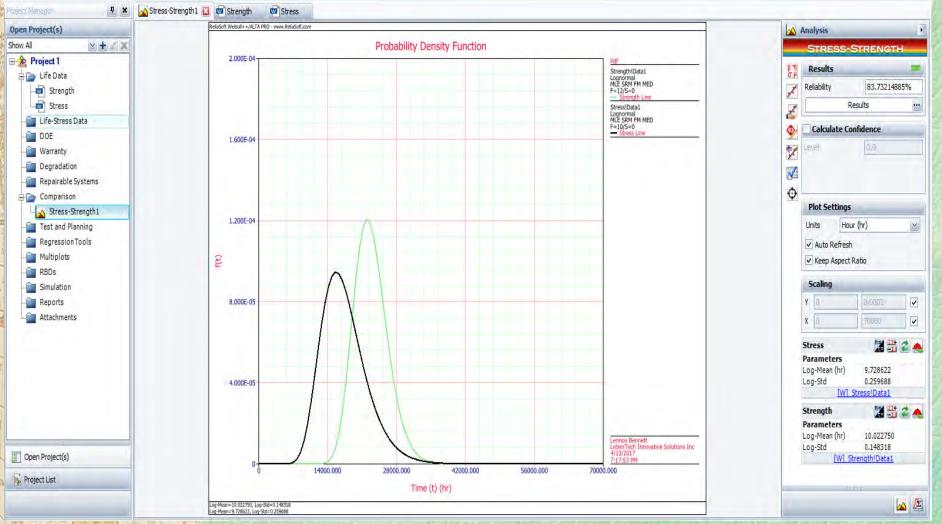




Table 2-45: Comparing Probability Pots of Stress for Normal and Lognormal Distribution

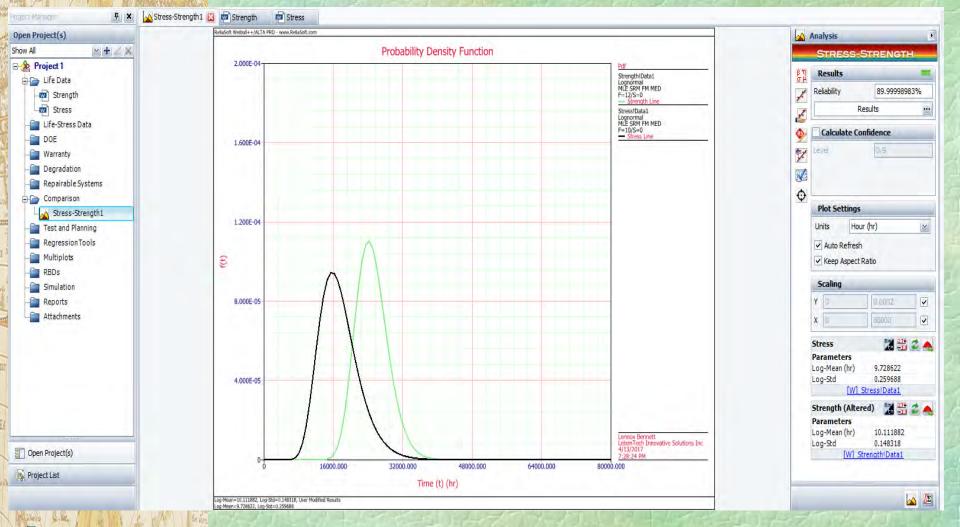

SOFTWARE APPLICATION STRESS-STRENGTH ANALYSIS

Figure 2-46: Using Stress- Strength Analysis to Determine Reliability

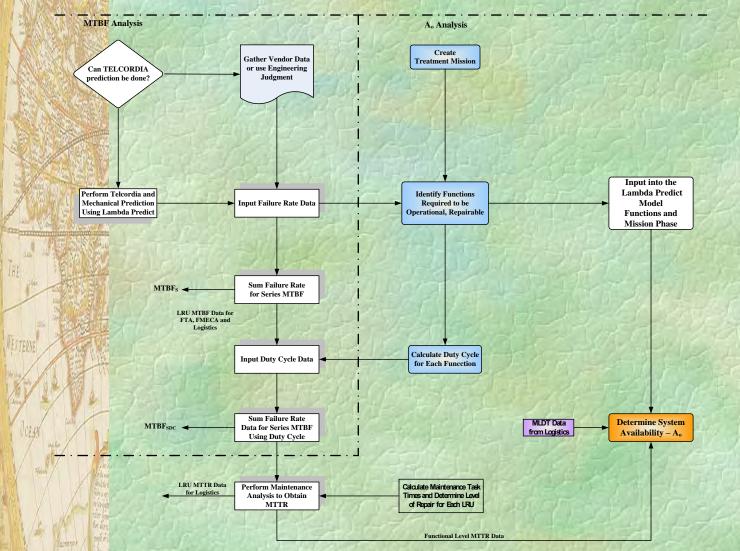
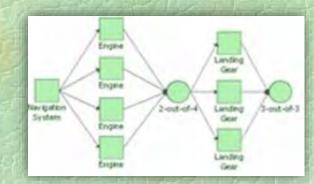
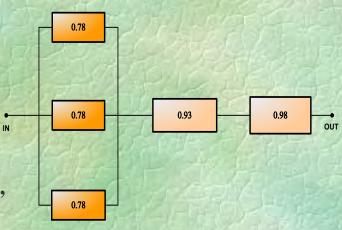

SOFTWARE APPLICATION STRESS-STRENGTH ANALYSIS

Figure 2-47: Determine Stress- Strength Given Target Reliability

RELIABILITY MODELING APPLICATION

Figure 2-48: Flow Diagram for Reliability, Maintainability, and Availability Predictions


QUANTIFYING SYSTEM RELIABILITY


Reliability Block Diagrams (RBDS)

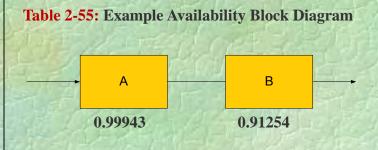
- A reliability block diagram is a graphical representation of how the components/subsystems of a system are "reliability-wise" connected.
- **Blocks represents components of the system:**
 - **Each block** has a failure and a repair characteristics
- Lines connect the blocks
 - The structure of these connections affects the reliability of the system

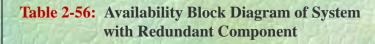
RDB Applications

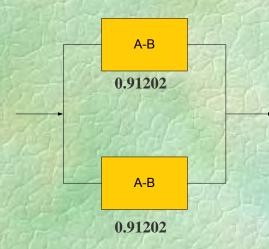
- **1.** Establishing specification boundaries
- 2. Vendor appraisal and design selection
- **3. Design optimization [architecture and components]**
- 4. Establishing subsystem and components requirements
- 5. Scenario modeling [failure modes, loads, duty cycle, procurement/running costs].

SYSTEM AVAILABILITY APPLICATION

 For series availability, consider the system represented by the block diagram shown in Fig. 2-55.
 Since the components are in series, the availability can be found by multiplying the availabilities of the two components as shown in equation below: Series Availability = A_A * A_B = 0.99943 * 0.91254 = 0.91202

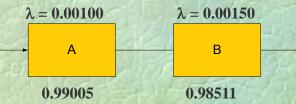

- **For parallel** availability, consider the system represented by the block diagram in figure 2-56.
- □ Since the components are parallel, the system availability can be found as shown in equation below: Parallel Availability = $1 - (1 - A_T) * (1 - A_B)$


= 1 - (0.0.08798) * (0.0.08798)


= 0.99226

Where:

A_T - is the availability of the top path



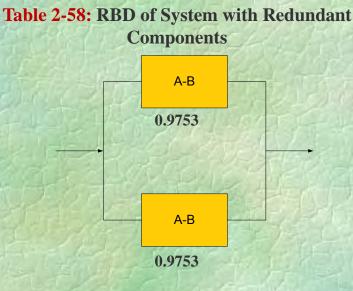
SYSTEM RELIABILITY APPLICATION

- If the underlying distribution for each element is exponential and the failure rate (λ_i) for each element are known, then the reliability of the system can be calculated using equation below:
- Series Reliability: Consider the system represented by the block diagram shown in Fig. 2-54.

Table 2-57: Example Reliability Block Diagram

- Components A and B in figure 2-57 are said to be in series, which means must operate for the system to operate.
- Since the system can be more reliable than the least reliable component, the configuration is often referred to as the weakest link configuration.
- □ Since the components are in series, the system reliability can be found by adding together the failure rates of the components and substituting the results in equation below:

$$R(t) = e^{-(\lambda_A + \lambda_B)t} = e^{-0.0025*10} = 0.9753$$


Furthermore, if the individual reliabilities are calculated [the bottom values] we could find that the system reliability by multiplying the reliabilities of the two component as shown in equation below:

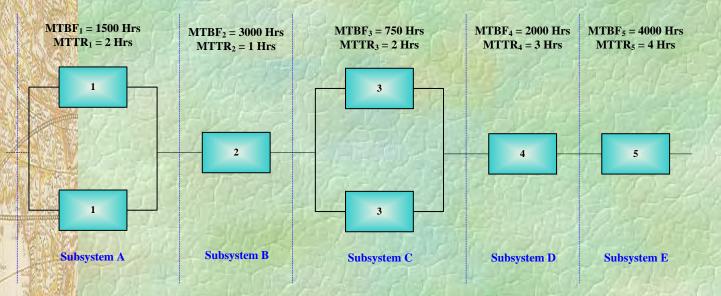
$$R(t) = RA(t) * RB(t) = 0.99000 * 0.98510 = 0.9753$$

N.A

SYSTEM AVAILABILITY APPLICATION

- □ Reliability with Redundancy: Now consider the system represented by the block diagram shown in Fig. 2-X.
- The system represented by the RBD in figure 2-58 has the same components (A and B in series denoted by one block labeled: A-B) used in figure 2-57, but two of each components are used in a configuration referred to as redundant or parallel.
- Two paths of operation are possible. The paths are top A-B and Bottom A-B. If either of two paths is intact, the system can operate.
- □ The reliability of the system is most easily calculated [equation below] by finding the probability of failure [1 − R(t)] for each path, multiplying the probabilities of failure, and then subtracting the result from 1.
- The reliability of each path was determined from the previous example.

RELIABILITY BLOCK DIAGRAM SYSTEM MODELING


- Next, the probability of a path failing is found by subtracting its reliability from 1. Thus, the probability of either path failing is: 1 − 0.9753 = 0.0247.
- **The probability** that both paths will fails is: 0.0247 * 0.0247 = 0.0006.
- □ Finally, the reliability of the system is 1 0.0006 = 0.9994, about 2.5% improvement over the series configuration system.
- **Q** $\mathbf{R}(t) = \mathbf{1} [\mathbf{1} \mathbf{R}_{\mathrm{T}}(t)] * [\mathbf{1} \mathbf{R}_{\mathrm{B}}(t)] = \mathbf{1} (0.0274) * 0.0274) = 0.9994$
- **Where:**
 - R_T is the reliability of the top path
 - R_B is the reliability of the bottom path
- A_i is defined by the following equation and reflects the percent of time a system would be available if delays due to maintenance, parts are ignored.

$$A_{i} = \frac{MTBF}{MTBF + MTTR} \times 100\%$$

RELIABILITY BLOCK DIAGRAM SYSTEM MODELING

Figure 2-59: Analyzing the Contribution to System Reliability

Table 2-47: Availability of System in Figure 2-59

MTBM	Mean System Failures	MTTR	Availability
258.77	1.0658	2.5695	99.7236

1. For ease of calculation, the times to failure and the times to repair were assumed to be distributed exponentially

2. 10,000 simulations trials were run using and operating time of 1,000 hours.

RELIABILITY BLOCK DIAGRAM SYSTEM MODELING

Table 2-48: Relative Unreliability of Subsystems [Repairs ignored]

Subsystem.	Reliability in 1000 Hours	Expected Failures per 1000 Hours	% Contribution to System Unreliability	Contribution to System Unreliability Ranking
А	0.7632	0.2368	14.12	4
В	0.7165	0.2835	16.90	3
С	0.4577	0.5423	32.33	1
D	0.6065	0.3935	23.46	2
E	0.7788	0.2212	13.19	5
System	0.1182	1.6773	-	

STANDBY REDUNDANCY

The system reliability of (n + 1) unit, in which one unit is operating and n units on the standby mission until the operating unit fails, is given by:

$$\mathbf{R}_{sd}(t) = \sum_{i=0}^{m} \left[\int_{0}^{t} \lambda(t) dt \right]^{i} e^{-\int_{0}^{t} \lambda(t) dt} / i!$$

Where:

٠

R_{sd} (t) is the standby system reliability.

m is the number of standby units..

When modeling a system with standby redundancy the reliability of the standby and the primary unit is needed as well as the reliability of the sensing and switching system that controls the system's operation.

The above equation is true if the following are true.

- 1. The switching arrangement is perfect.
- 2. The units are identical.
- 3. The unit failure rates are constant.
- 4. The standby units are as good as new.
- 5. The unit failure are statistically dependent.

STANDBY REDUNDANCY

For constant unit failure rate, the equation becomes:

$$\mathbf{R}_{sd}(t) = \sum_{i=0}^{m} (\lambda t)^{i} e^{-\lambda t} / i!$$

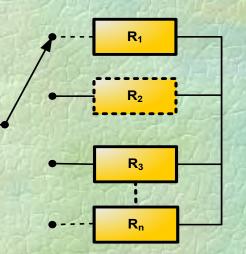


Figure 2-61: Standby Redundancy Model

The standby system mean time to failure.

$$\mathbf{MTTF}_{sd} = \int_{0}^{\infty} \left[\sum_{i=0}^{m} (\lambda t)^{i} e^{-\lambda t} / i! \right] dt = (m+1)/\lambda$$

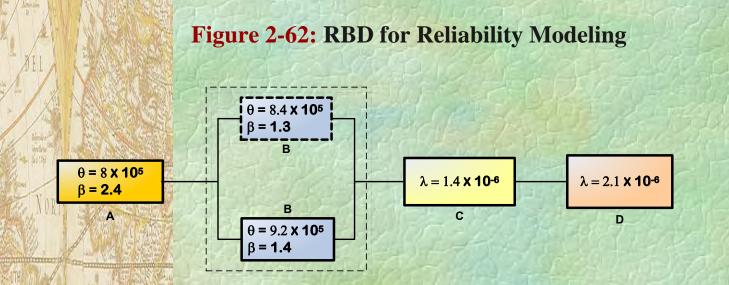
EXAMPLE APPLICATION

Assume that a standby system has two independent and identical units: one operating and another on standby. The unit failure rate is 0.005 failures per hour.

Calculate the system reliability for a 100 hour operation and mean time to failure, if the switching mechanism never fails, and the standby unit remains as good as new in its standby mode.

$$\mathbf{R}_{sd}(t) = \sum_{i=0}^{m} (\lambda t)^{i} e^{-\lambda t} / i!$$

 $\mathbf{R}_{sd}(100) = \sum_{i=0}^{1} \left[(0.005)(100) \right]^{0} e^{-(0.005 \times 100)} / 0! + \left[(0.005)(100) \right]^{1} e^{-(0.005 \times 100)} / 1!$


 $\begin{aligned} \mathbf{R}_{sd}(100) = & \begin{bmatrix} \mathbf{0.5} \end{bmatrix}^0 e^{-(0.5)} / \mathbf{0!} + \begin{bmatrix} \mathbf{0.5} \end{bmatrix}^1 e^{-(0.5)} / \mathbf{1!} = \begin{bmatrix} \mathbf{0.5} \end{bmatrix}^0 \times \mathbf{0.6065} + \begin{bmatrix} \mathbf{0.5} \end{bmatrix}^1 \times \mathbf{0.6065} \\ \mathbf{R}_{sd}(100) = & \mathbf{1} \times \mathbf{0.6065} + \mathbf{0.5} \times \mathbf{0.6065} = \mathbf{0.90975} \end{aligned}$

Similarly, using the given data in the following equation MTTF we get:

$$\mathbf{MTTF}_{sd} = \int_{0}^{m} \left[\sum_{i=0}^{m} (\lambda t)^{i} e^{-\lambda t} / i! \right] dt = (m+1)/\lambda = (1+1)/0.005 = 400 \text{ Hours}$$

RELIABILITY MODELING EXAMPLE APPLICATION

Compound Models

Determine the system reliability R(t) for t = 15,000 Hrs. **The following are different component failure distributions:**

 $\mathbf{R}(t) = e^{-\lambda t}$ Exponential $\mathbf{R}(t) = e^{-\left(\frac{t}{\theta}\right)^{\beta}}$ Weibull

۲

EXAMPLE APPLICATION

A product for use in fuel power production plant consist of four sub-systems. Table 2-52 identifies critical subsystems and calculations for operational availability using hypothetical data. A_o is calculated using the equation below:

 $\mathbf{A}_{o} = \frac{\mathbf{Uptime}}{\mathbf{Uptime} + \mathbf{MCT} + \mathbf{MLDT}} = \frac{\mathbf{MTBF}}{\mathbf{MTBF} + \mathbf{MTTR} + \mathbf{MLDT}}$

Equipment	MTBF [Hrs]	MTTR [Hrs]	MLDT	A _o
Compressor	5632	1.00	1.95	0.99948
Compressor Turbine	6233	0.83	5.00	0.99906
Power Turbine	13531	1.11	2.08	0.99976
Generator	10427	0.91	2.13	0.99970

Table 2-52: Output of A_o Calculations

FTA APPLICATION IN PRODUCT DESIGN

Fault Tree Analysis

- A logical, structured process that can help identify potential causes of system failure before the failures actually occur.
- **Benefits**
 - 1. Identify possible system reliability or safety problems at design time,
 - 2. Assess system reliability or safety during operation
 - 3. Identify components that may need testing or more rigorous quality assurance scrutiny,
 - 4. Identify root causes of system failures.

When to Apply FTA

- a. Applied any time during the life of a product, system, subsystem, or equipment item
- b. Primarily used to examine incidents or accidents whose consequences would be classified as catastrophic
- c. Often initiated after a major hazard has been recognized for the first time

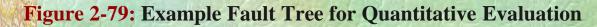
APPLICATION INVOLVING TTF DISTRIBUTION

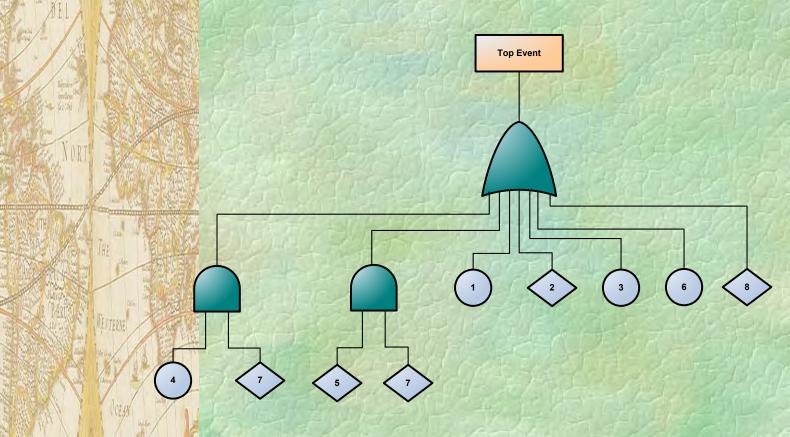
Steps for Performing Quantitative Evaluation

- Determine the component failure rate $[\lambda_c]$ of each component using FRACAS, MIL-HDBK-217, NPRD-85, field data, etc.
- 2. Determine the model failure rate $[\lambda_m]$ for each component.

 $\lambda_{m} = \alpha \times \lambda_{c.}$

1.


4.


- α = The probability that the component will fail in that failure mode [FMD-97].
- **3.** Calculate the probability of failure F(t) of each failure mode.

$$\mathbf{F}(\mathbf{t}) = \mathbf{1} - \mathbf{e}^{-\lambda_{m}t}$$

Calculate the cut-set probabilities.

APPLICATION INVOLVING TTF DISTRIBUTION

EXAMPLE APPLICATION CRITICALITY CALCULATION

	Table 2-59: Time to Failure [TTF] Data						
Fault	λ _c	α	λ _m	λ _m * t	F(t)		
1	0.020 x 10 ⁻⁶	0.80	0.0160 x 10 ⁻⁶	0.0016	0.001598		
2	0.040 x 10 ⁻⁶	0.12	0.0048 x 10 ⁻⁶	0.00048	0.000479		
3	0.002 x 10 ⁻⁶	0.25	0.0005 x 10 ⁻⁶	0.00005	0.000049		
4	0.035 x 10 ⁻⁶	0.60	0.0210 x 10 ⁻⁶	0.00210	0.002097		
5	0.200 x 10 ⁻⁶	0.30	0.0600 x 10 ⁻⁶	0.00600	0.005982		
6	0.008 x 10 ⁻⁶	0.20	0.0016 x 10 ⁻⁶	0.00016	0.000159		
7	0.140 x 10 ⁻⁶	0.75	0.1050 x 10 ⁻⁶	0.01050	0.010445		
8	0.010 x 10 ⁻⁶	0.40	0.0040 x 10 ⁻⁶	0.00040	0.000399		

Given λ_c , α and the Time (t) = 100,000 hours determine the failure probability of each basic fault.

 $\lambda_{m} = \alpha \times \lambda_{c}$

 $F(t) = 1 - e^{-\lambda m t}$

CRITICALITY CALCULATION

Table 2-60: Failure Data Reliability

Cut Set Components	F _{cs} (t)	R _{cs} (t)
1 only	0.001598	0.99840
2 only	0.000479	0.99952
3 only	0.000049	0.99995
4 only	0.002097	0.99790
5 only	0.005982	0.99402
6 only	0.000159	0.99984
4 and 7	0.000022	0.99997
5 and 7	0.000062	0.99994

Determine the failure probability of each Cut Set.

 $F_{cs}(t) = F_{C1}(t) * F_{C2}(t) * F_{C3}(t) * \dots F_{cn}(t)$ $R_{cs}(t) = 1 - F_{cs}(t)$

CRITICALITY CALCULATION

SOLUTION CONTINUED

Determine the top-event Failure Probability:

 $R_{OVERALL} = R_{CS1}(t) * R_{CS2}(t) * R_{CS3}(t) * \dots R_{CSN}(t)$

F_{OVERALL} = 1 - R_{OVERALL}

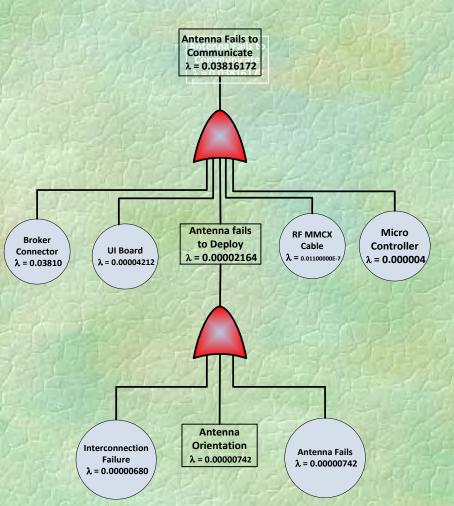
R_{overall} = 0.99840 x 0.99952 x 0.99995 x 0.99790 x 0.99402 x 0.99984 x 0.99997 x 0.99994.

```
R<sub>OVERALL</sub> = 0.989573
```

 $F_{OVERALL} = 1 - R_{OVERALL} = 1 - 0.989573 = 0.010427$

FTA APPLICATION IN PRODUCT DESIGN

Case Study


- The basic aspects of fault tree analysis can be explained through an example of containment spray system which is used to scrub and cool the atmosphere around a nuclear reactor during an accident.
- It is shown in Fig. 2-82. Any one of the pump and one of two discharges valves (V1 and V2) is sufficient for its successful operation. To improve the reliability, an interconnecting valve (V3) is there which is normally closed.
- **The system is simplified and the actual system will contain more number of valves.**
- **Step 1: The undesired top event is defined as 'No water for cooling containment'.**
- □ Step 2: The fault tree is developed deductively to identify possible events leading to the top event. These may be
 - A. No water from 'V1 branch and V2 branch'.
 - B. No supply to V1 or V1 itself failed. Since V1 failure is basic event, it doesn't need further analysis.
 - C. The lack of supply to V1 is due to simultaneous failure of P1 branch and V3 branch.
 - **D.** Supply from V3 branch is due to either failure of V3 or P2.
 - E. Similarly V2 branch is also developed. The resulting fault tree is shown in Fig. 2-83.
 - **Step 3:** Qualitative evaluation of fault tree. The qualitative evaluation of fault tree determines minimal cut sets of fault tree. One can write the logical relationship between various events of fault tree as follows: $T = A \cdot B$

FTA APPLICATION IN PRODUCT DESIGN

FTA WORKED EXAMPLE

Figure 2-84: Fault Tree Analysis of Antenna Failure

M3 - LEARNING OBJECTIVES

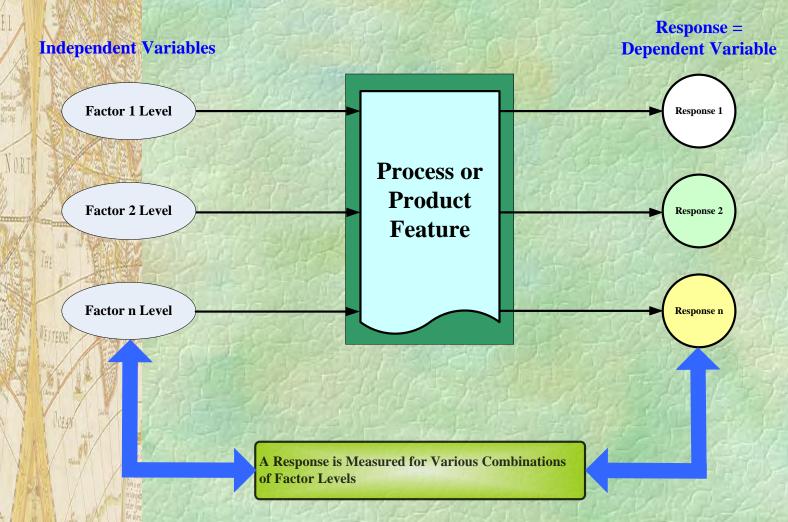
Participant Shall be able to:

- Acquire knowledge of how to determine the conditions that optimize product parameters.
- Gain understanding of how to improve product reliability using design of experiment.
- Identify important factors and determine the best value of them in order to optimize the performance of the product.
- Gain understanding of how to determine the number of factors, desired level, and number of runs?
- Gain understanding of how to utilize Design of Experiments to support Life Data Analysis.
 - Utilized DOE to characterized performance and estimate reliability.

Adapt | Implement | Improve

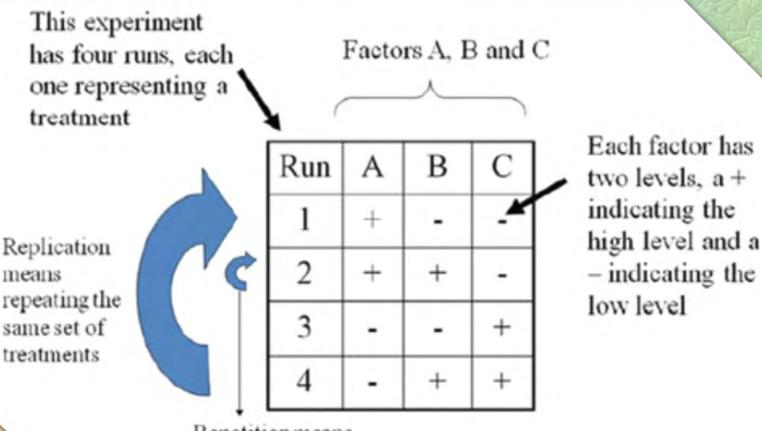
WHAT IS DESIGN OF EXPERIMENT?

Purposeful changes of the inputs [factors] in order to observe corresponding changes in the output [response].


Figure 1: Structure of DOE Engineering Process

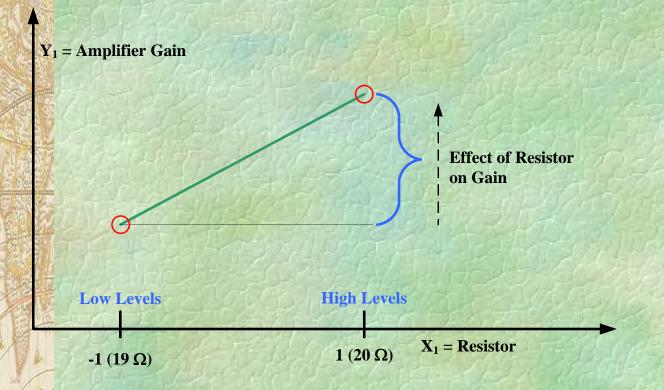
1 2 3	Run	X1	X ₂	X ₃	X4	Y ₁ Y ₂	Ŧ	Sy
2 3	1							
3	2							
	3							

METHODS FOR PERFORMING EXPERIMENT


Figure 2: The DOE Concept

COMPONENTS OF EXPERIMENTAL DESIGN

Figure 3: DOE Terminology



Repetition means repeating the same treatment

<u>AIS</u>

COMPONENTS OF EXPERIMENTAL DESIGN

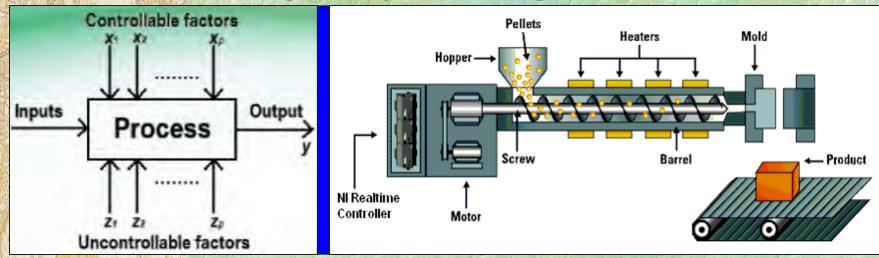
Figure 4: Main Effect of a Factor

The main effect of a factor is defined as the change in the response due to varying one factor from its low level, and keeping the other factors at their center-level.

PROCESS MODEL FOR DESIGN OF EXPERIMENT

 Table 3: 2³ Factorial DOE and the Associated Orthogonal Design Matrix

SIMPLE DEFINITION OF TWO-LEVEL ORTHOGONAL DESIGNS


Salt -	Run	Act	ual Setting	S	C	oded Matri	Responses	
		(5, 10) A: Time	(70, 90) B: Temp	(100,200) C: Press	(A) Time	(B) Temp	(C) Press	1.44 PROPERTY
UTH IN	1	5	70	100	-1	-1	-1	
	2	5	70	200	-1	-1	+1	
	3	5	90	100	-1	+1	-1	
R PA	4	5	90	200	-1	+1	+1	
	5	10	70	100	+1	-1	-1	
	6	10	70	200	+1	-1	+1	
A. A.	7	10	90	100	+1	+1	-1	
1.	8	10	90	200	+1	+1	+1	

PROCESS MODEL FOR DESIGN OF EXPERIMENT

Consideration Should be Given to:

- □ Which variables are most influential on the response Y?
- Where to set the influential X's so that Y is almost near the desired nominal value?
- Where to set the influential X's so that the variability in Y is small?
- Where to set the influential X's so that the effects of the uncontrollable variables are minimized?

Figure 6: Injection Molding Process

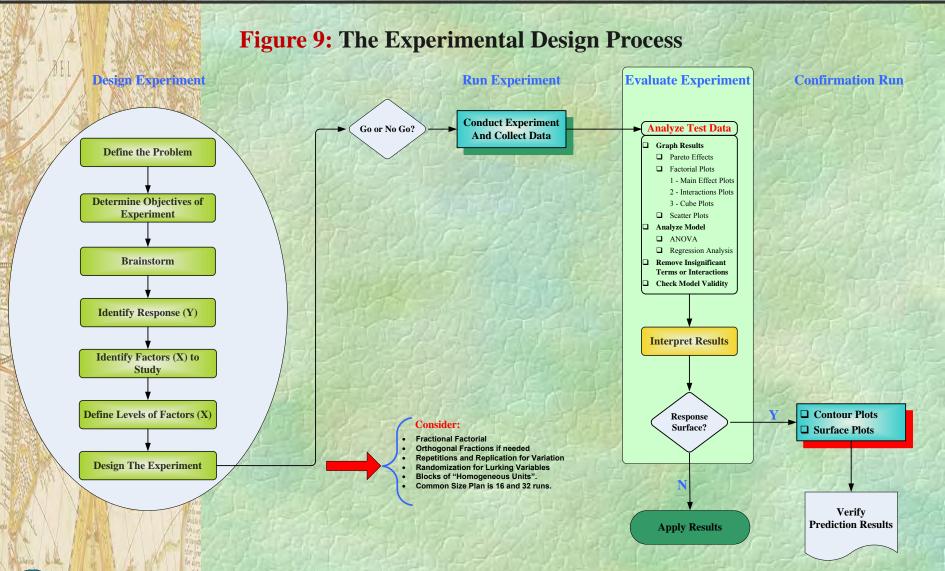
PLANNING A DOE EXPERIMENT

What do you Need to Plan and Experiment?

Measure Phase Deliverables

- Advocacy Team
- Baseline of Y response
- Problem Statement, including Y response
- Process map of process | Product Specification

Analyze Phase Deliverables:


- Analysis of Baseline Data
 - o Graphs
 - \circ F, t, and χ^2 Tests
- ANOVA | Regression Analysis
 Potential Vital X's.

Management Team Buy-in:

- Time
- Cost
- Resources
- Support of DOE Strategy

EXPERIMENTAL DESIGN STEPS

EXPERIMENTAL DESIGN STRATEGIES

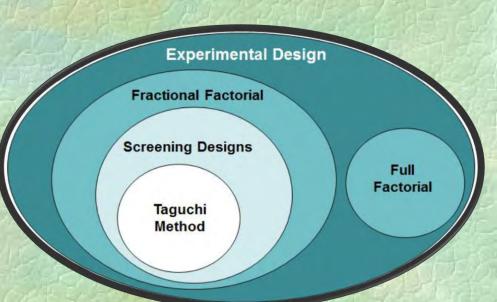
Figure 12: Available DOE Software Application Design Choices

	Factors													
Run	2	3	4	5	6	7	8	9	10	11	12	13	14	15
4	Ful	111	-	-		10.1								
8		Full	I٧	ш	ш	ш								-
16			Full	V	I٧	IV	I٧	III	III	III	III	ш	ш	III
32				Full	٧I	IV	I٧	IV	IV	I٧	I٧	I٧	IV	I٧
64					Full	VII	V	IV	IV	IV	I٧	IV	IV	IV
128		1				Full	VIII	VI	V	V	I٧	I۷	IV	I٧

Available Factorial Designs (with Resolution)

Available Resolution III Plackett-Burman Designs

Factors	Runs	Factors	Runs	Factors	Runs
2-7	12,20,24,28,,48	20-23	24,28,32,36,,48	36-39	40,44,48
8-11	12,20,24,28,,48	24-27	28, 32, 36, 40, 44, 48	40-43	44,48
12-15	20,24,28,36,,48	28-31	32, 36, 40, 44, 48	44-47	48
16-19	20,24,28,32,,48	32-35	36,40,44,48		


TYPES OF ENGINEERING DESIGN OF EXPERIMENTS

Discovery

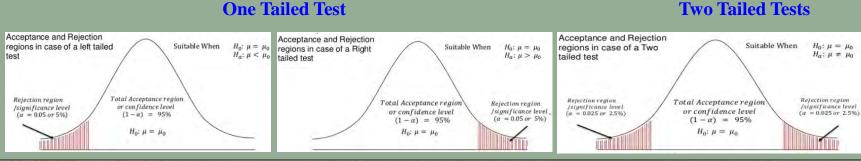
- Usually involve hands on activities.
- Design to generate new ideas or approaches.
- May involve systems or processes that are not well understood or refined.

Hypothesis

- Seek to falsify specific hypothesis.
- Closer to the traditional approach.
 - Used often in the attempt to prove a theory, idea, or approach.

TYPES OF ENGINEERING DESIGN OF EXPERIMENTS

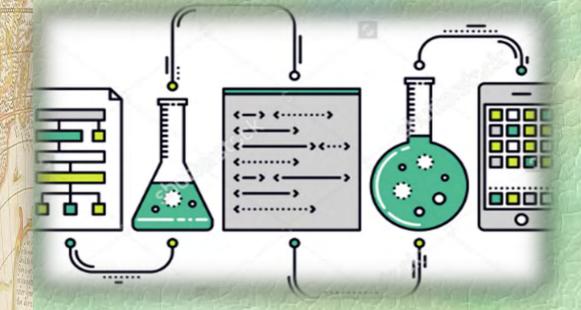
Simple Comparison Experiments


One Factor – Multiple Levels.

Objective of Experiment.

- Compare two are more means, variances or probabilities.
- Compare X vs. Y: [Better or Worse] paired comparison is a special case of randomized block design.

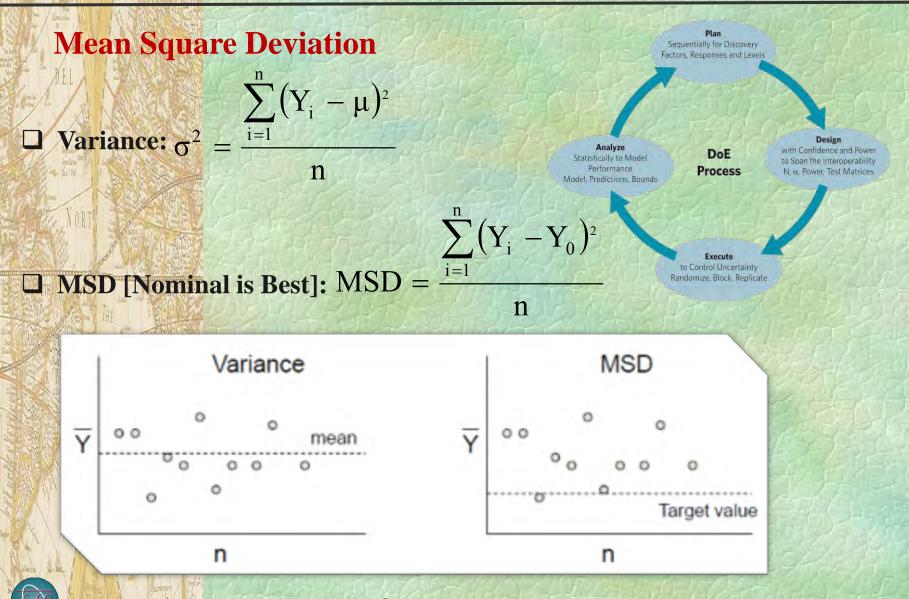
Major Considerations:


- Sample Size
- Structure of statistical hypothesis
- Knowledge of distribution: Normal, F-statistics, χ² and other characteristics.

In general for Comparison use T-Critical Test Statistics

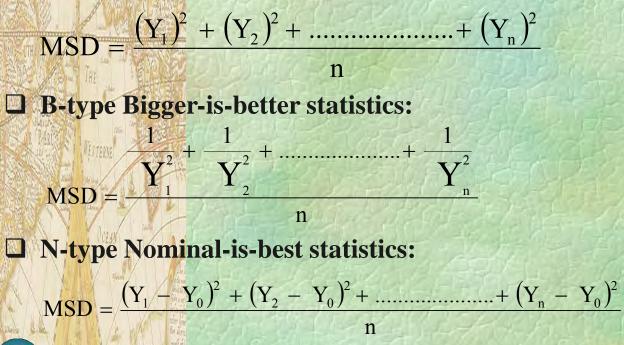
Conducting a Main Effects Experiment

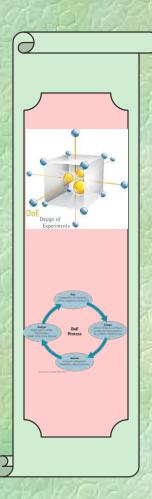
- □ The objective: Optimize the recipe in order to achieve a high judging score.
- □ The situation: We have time to bake 4 batches of cookies for the experimental judging.



Assigning the Factors to the Array

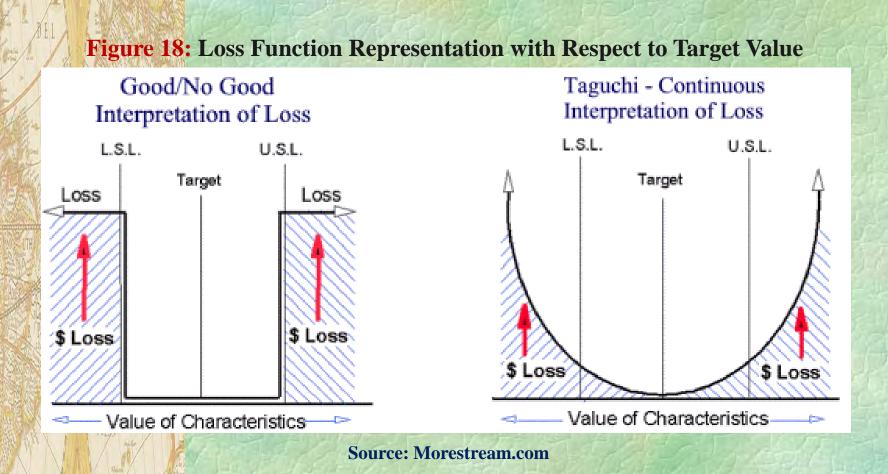
- □ The main effect experiment [screening] considers each factor as independent so assign them to array columns arbitrarily.
- The consideration of interactions and confounding is beyond the scope of example below.
- Screening experiments are often with many factors for further experimentation.


		$L_4(2^3)$				$L_4(2^3)$	
Run No.	Temp	Time	Size		A	B	C
the number of the second secon	325	12	Sm	Ĩ	1	1	1
10 - 2 V	325	15	Lg		17	2	2
DOLLAN 3	375	12	Lg		2	1	2
Sain 4	375	15	Sm		2	2	1


Table 11: Assigning Factors to The Array

Three Types of Analysis Statistics

- Signal to Noise Ratio: S/N = -10log(MSD)
 In every case the larger the signal to noise ratio the better the results.
 - **S-type smaller-is-better statistics:**


INTEGRATING LOSS FUNCTION WITTH DOE

Taguchi Loss Function Concepts

- ☐ Taguchi describes a continuous Loss Function that increases as a part deviates from the target, or nominal value (Figure 18).
- The Loss Function stipulates that society's loss due to poorly performing products is proportional to the square of the deviation of the performance characteristic from its target value.
- □ Taguchi adds this cost to society (consumers) of poor quality to the production cost of the product to arrive at the total loss (cost).
- Taguchi uses designed experiments to produce product and process designs that are more robust - less sensitive to part/process variation.

INTEGRATING LOSS FUNCTION WITTH DOE

<u>AIS</u>

Fuel Pump Noise Study

- In an experimental study of an automotive fuel pump noise, three 2 level factors were included as illustrated in Table 17.
- The Taguchi L₄ orthogonal array was used to define the four trial conditions.
- □ Six samples of each of the four trial conditions were tested and results were documented as shown in table 18.
- □ The levels were selected so that the trial condition 1 represents the *current design* of the fuel pump.
- □ If a decision is made to change the design to determine the optimum configuration, estimate the performance of the optimum design and the cost savings when the new fuel pump is produced.

Table 17: Fuel Pump Noise Study Example

De	sign Factors and	l Their Le	Experi	ment wi	ll use L	4	
Columns	Factor Name	Level 1	Trial Column	1	2	3	
1	Seal Thickness	Present	Thicker	Trial 1	111	1	-1/2
2	Rotor Chuck Type	Present	New Design	Trial 2	1	2	2
THE 3	Finger to Drive C1	Present	Increase	Trial 3	2	1	2
				Trial 4	2	2	RAC.

Note: Three 2 Level factors studied | Objective: Design least noisy and best performance pump | Characteristics: Nominal the Best [SIQ = 70 Target].

		- Mar Hakar	F	actor	s		O	oser	vati	on			Respor	ises
Trial Repetitions	Standard Order	Run Order	Seal Thickness		Finger to Drive C ₁	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	Y Mean	Y Std	Signal to Noise Ratio
NORT .	3	1	1	1	1	67	85	87	65	59	76	73.1667	11.3563	-20.71
2	4	2	11	2	2	65	65	66	54	73	58	63.5	6.6558	-18.99
ASK 3		3	2	1	2	54	45	56	45	63	46	51.5	7.3959	-25.89
4	2	4	2	2	12	56	67	45	54	56	74	58.6667	10.2697	-23.36
												-88.95		

Table 18: Original Observation and Their S|N Ratios

Quality Characteristics: Nominal is Best

Standard Deviation (SD)=

$$\sum_{i=1}^{n} (Y1 - \overline{Y})^2 / (n-1)$$

Mean Square Deviation (MSD) = $\frac{\sum_{i=1}^{n} (Y_i - Y_0)^2}{N}$

Solution

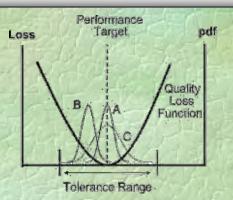
Target value quality characteristic = 70. MSD for repetition 1 is determined as follows:

$$MSD = \frac{\sum_{i=1}^{N} (Y_i - Y_0)^2}{N} = \frac{(67 - 70)^2 + (85 - 70)^2 + (87 - 70)^2 + (65 - 70)^2 + (59 - 70)^2 + (76 - 70)^2}{6} = 117.5$$

- S/N = -10 log(MSD) = -10 log₁₀ {117.5} = -20.71
- Similarly for repetition 2: $S/N = -10 \log_{10} (MSD) = -10 \log \{79.167\} = -18.9854$
- **Also for repetition 3:** $S/N = -10 \log_{10} (MSD) = -10 \log \{387.833\} = -25.8865$
- **And for repetition 4:** $S/N = -10 \log_{10} (MSD) = -10 \log \{216.33\} = -23.3512$

ALL EXCLOSE T	Table 17. Anar		ITTAILCE AILO VA	Table	
Column	Factor	DOF	Sum of Squares	Variance	Percent
Reserved and a second s	Seal Thickness	1	22.801	22.801	82.97
NORT 2	Rotor Chuck Type	1	4.512	4.512	16.43
	Finger to Drive	1	0.164	0.164	00.60
All other errors	1 House	0	199245		而不是
Total		3	27.48		100.00

Table 19: Analysis of Variance ANOVA Table


Assume that the following information is used:

Target value of quality characteristics	= 70
Tolerance value of quality characteristics	$=\pm 20$
Cost of replacement/ rejection	= \$45.00
Production Rate	= 20,000

Table 20: The Main Effects

Columns	Factor Name	Level 1	Level 2	$L_2 - L_1$	Level 3	Level 4
	Seal Thickness	-19.85	-24.63	-4.78	0.00	0.00
2	Rotor Chuck Type	-23.30	-21.18	2.12	0.00	0.00
3	Finger to Drive C1	-22.04	-22.44	-0.40	0.00	0.00

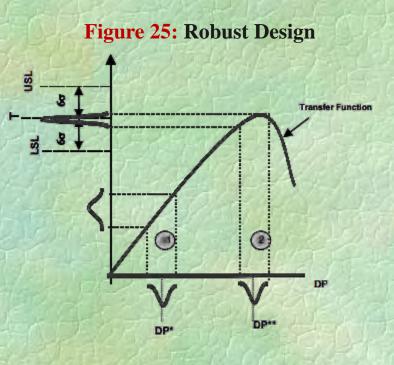
Table 21: Estimate of the Optimum Condition of Design | Process

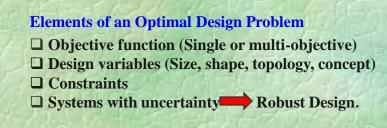
Factor Description	Level Description	Level	Contribution
Seal Thickness	Present Design	1	2.3875
Rotor Chuck Type	New Design	2	1.0625
Finger to Drive Clearance	Present Design	1	0.2025
Contribution from All Factors [Total]	CALLER 44	克耳得	3.6524
Current grand Average of Performance			-22.2375
Expected result at Optimum	化合在学生	的态度	

Calculations: $2.3875 + 1.0625 + 0.2025 = 3.6524 | -22.2375 + 3.6524 = -18.5851 | -88.95 \div 4 = 22.375$

Table 22: Calculation of Loss

Item	Problem Definition	Values Defined or Determined
na na 1	Target value of quality characteristics (m)	70.00
2/	Tolerance of quality characteristics	20.00
3 decina o la	Cost of rejection at production (per unit)	\$45.00
4	Unit produced per month (Total)	20,000
5	S/N Ratio of current design/part	-20.71
6/11	S/N Ratio of new design/part	-18.5851
STATION .		STATE SUPPORT
	Computation of Loss Using Taguchi Loss Function	いましておもうちちょうでも
TH 7 1	Loss Function: L(y) = 0.11 x MSD = 0.11 * 117.5 Also L(y) =	$K * (y - m)^2$
1956年 月十	K = Cost of replacement / (Tolerance) ² = 45/ (20) ² = 0.1125	11 There all all chi
Stand and	Before Experiment	TO THE THE REPORT OF THE
8	Loss/unit due to deviation from target in current design	\$12,953.00 * 12
NO PARS	A REAL FROM STORE CONTRACT VERSION	
NH STORE	After Experiment	
9	Loss/unit due to deviation from target will be reduced from	\$7,941.00 * 12
後に入し	\$12,953.00 to:	1976年1月1日月1日1日
A SUS		- BROKAN PROFILE
1 / 1937.6	Monthly Savings	AVIT FOR THE
10	If production were maintained at the improved condition, then based on 20,000 units/month	\$100246.90
No. I I I I I I I I I I I I I I I I I I I		


This estimate includes only those variables that have a significant contribution



Robust Design

Robust design is concerned with the product/process functional requirement and methods to provide this function at lowest overall cost and targeted quality level under the variability produced by the noise factors.

- Robustness is defined as reducing the variation of the functional requirements of the system and having them on target as defined by the customer.
- □ The principal idea of robust design is that statistical testing of a product should be carried out at the design stage, the off-line stage, in order to make the product robust against the effects of variation in the manufacturing and use environments.

Design Optimization

- ☐ Table 27 shows the test matrix and partial results of a DOE used to determine reliability of a product.
- □ After the experimental data y_{i, jk} are available, the experimenter is required to analyze these data to optimize the product design.
- This should be done following the steps outlined above and using the equations below to facilitate the calculations.
- Reliability is used as a quality characteristic. Since reliability R is a Larger-the-Better characteristics between 0 and 1, 1/R is a Smaller-the-Better type target at 1.
- **The MSD of 1/R is:** $MSD_i = \frac{1}{l} \sum_{j=1}^{l} \left(\frac{1}{R_{ij}} 1 \right)^2$, i = 1, 2, ..., N
- □ Where R_{ij} is the reliability estimate at the cross combination of row i and column j. I is the number of observation in the row.

Design Optimization Continued

The Signal-to-Noise ratio is determined as follows:

$$\hat{\eta} = -10\log\left[\frac{1}{l}\sum_{j=1}^{l}\left(\frac{1}{R_{ij}}-1\right)^{2}\right], \quad i = 1, 2, \dots, N$$

Example Application

- Refer to table 27. Suppose that the reliability estimates in the first row are 0.92, 0.96, 0.80 and 0.87. Calculate the signal-to-noise ratio for this row.
- Substitute respective values in equation above and calculate the S/N value for the row.

$$\hat{\eta} = -10\log \left\{ \frac{1}{4} \left| \sum_{j=1}^{1} \left(\frac{1}{0.92} - 1 \right)^2 + \left(\frac{1}{0.96} - 1 \right)^2 + \left(\frac{1}{0.80} - 1 \right)^2 + \left(\frac{1}{0.87} - 1 \right)^2 \right| \right\} = 16.3$$

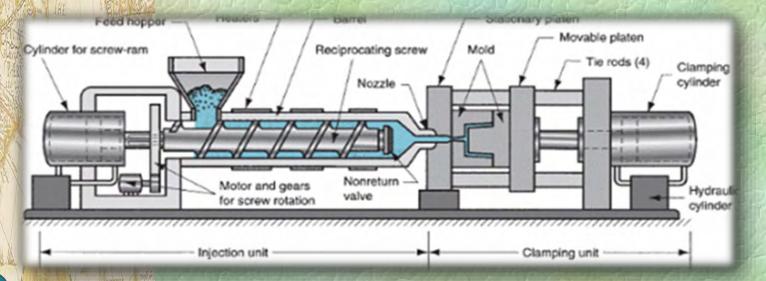
□ This process should be repeated for all rows to determine their respective S/N ratio. Optimal values is determined as discussed earlier.

Table 27: Cross Orthogonal Array with Reliability Estimates

							_		256	Ou	ter Ar	ray	の戸平	
	_						_		Z _{1:}	1/1	11	2	2	136
Ru	Run Inner Array – Factors and Interactions							ions	I_2	自办	2	F	2	片 毛"与
Standard Order	Run Order		1	3	4	5	6	7	Z _{3:}		2	2	1	SIN Ratio
6			11	1	1	1	-1	1	FIL	0.92	0.96	0.80	0.87	16.3
5	2		-1-	L	2	2	2	2		R ₂₁	R ₂₂	R ₂₃	R ₂₄	4. 14
2 1	3	4	2	2	, i	1	2	2	Sher.	R ₃₁	R ₃₂	R ₃₃	R ₃₄	2.2
144	4		2	2	2	2	1	1	T	R ₄₁	R ₄₂	R ₄₃	R ₄₄	To T
Part 3	5	2	1	2	-1	2	1	2	di la					the of
8	ITERNE 6	2	/-1	2	2	T	2	1		t i	÷ 2	and the	1 de	
L.	7	2	2	1	$1 - 1_{\tau_{\rm c}}$	2	2	1, 1	F.			23	一日	2.123
	8	2	2	- 1 ,0,0	2	Stic.	1	2	L.	R ₈₁	R ₈₂	R ₈₃	R ₈₄	Park

Example Application

- Components manufactured in an injection molding process are showing excessive shrinkage.
- □ This is causing problems in assembly operations downstream from the injection molding area.
- A quality improvement team has decided to use a designed of experiment to study the injection molding process so that shrinkage can be reduced.
- The team decide to integrate six factors: Mold Temperature (A), Screw Speed (B), Holding Time (C), Cycle Time (D), Gate Size (E), and Holding Pressure (F). Each at two levels.
- □ The objective is to characterize and learn how each factor affects shrinkage and also, how the factors interact.



Fractional Factorial Design

Factors: 8	Base Design:	6, 16	Resolution:	I
Runs: 16	Replicates:	1	Fraction:	1/16
Blocks: 1	Center pts (total):	0		1 Col

* WARNING * Main effects are confounded with the mean (I)

Design Generators: E = ABC, F = BCD, G = ABCE, H = BCDF

Std Order	Run Order	Center Pt	Blocks	Mold Temp	Screw Speed	Hold Time	Cycle Time	Gate Size	Hold Pressure	ABC	BCD	Observed Shrinkage (x 10)
14 June 14		1	1	-/1	-1	1	1	-1	-1	1	-1	5
In In	2	1	1	-1	1	/-1	1	1	-1	1	1	34
No 14	3	1	1	1	1	-1	j1	-1	1	1	1 -	60
15	4	1	1	-1	1	- 1	1	-1	1	1	1	37
3	5	1	1	-1	1	-1-	-1	1	1	1	- 1	32
Thinking Stranger	Gunt and Gunt many	1 6	1	1	1	1	-1 5	1	-1	1	1	60
H 1 5	The second second	- 1	1	-1-	-1	1	-1	1	_1	1	1/	4
9 HE	8	11	1	-17	-1	-1	1.2	-1	1	1	1	8
2	9	1	_ 1	1	.1	-1	-1	1	-1	1	1	10
13	10	1	_1-	月-1 月	-1	1	1	1	1	1	1	16
1 16	II	1	1	1	1	1	1	1	1	1	1	52
12 TERNE	12	1	1	1- ,	1	10-1 1	1	-1	-1	1	1	60
10 de ha	13	1	1	1.1	-1	-1	1	1	1 =	1	1	12
6	14	1	1	4.17	-1	71	-1	-1	1	1	1	15
	15	1	1 /	.1	1.1.1	1-1-	-1	-1	1-1	1	1	6
7 1014	16	1	1	-1-	1	1	-1	-1	-1	1	_1	26

Table 34: $A2_{IV}^{6-2}$ Design for Injection Molding

Table 35: Estimated Effects and Coefficients for Observed Shrinkage (coded units)

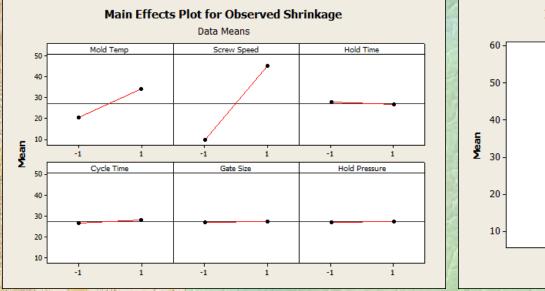
Term	Effect	Coef	SE Coef	Т	P			
Constant	20101	27.313	2.511	10.88	0.000			
Mold Temp	13.875	6.937	2.511	2.76	0.028			
Screw Speed	35.625	17.813	2.511	7.09	0.000			
Hold Time	-0.875	-0.438	2.511	-0.17	0.867			
Cycle Time	1.375	0.688	2.511	0.27	0.792			
Gate Size	0.375	0.187	2.511	0.07	0.943			
Hold Pressure	0.375	0.188	2.511	0.07	0.943			
Mold Temp * Screw Speed * Cycle Time	0.125	0.063	2.511	0.02	0.981			
Mold Temp * Screw Speed * Hold Pressure	-4.875	-2.438	2.511	-0.97	0.364			
A MARINE AND	23211	P. MAR	and had	420 JE # 11	FEREN			
1 2/ 1 × 5/200		15 bin	1 - 1 - 1 -		ALT SA			
S = 10.0423 PRESS = 3688.16 R-Sq = 89.40% R-Sq(pred) = 44.62% R-Sq(adj) = 77.28%								

 $\hat{\mathbf{Y}} = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 \mathbf{x}_1 + \hat{\boldsymbol{\beta}}_2 \mathbf{x}_2 + \hat{\boldsymbol{\beta}}_{12} \mathbf{x}_1 \mathbf{x}_2$

 $= 27.3125 + 6.9775x + 17.8125x + 5.9375x x_2$

Analysis of Variance for Observed Shrinkage (x 10) (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Main Effects	6	5858.38	5858.38	976.40	9.68	0.004
3-Way Interactions	2	95.13	95.13	47.56	0.47	0.642
Residual Error	7	705.94	705.94	100.85	14/16-7	177-17
Total	15	6659.4433				中華市市



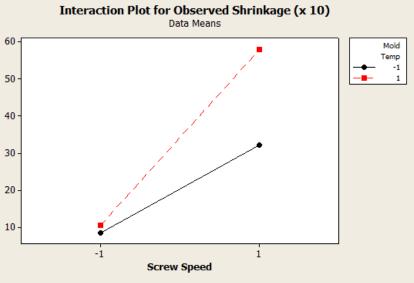
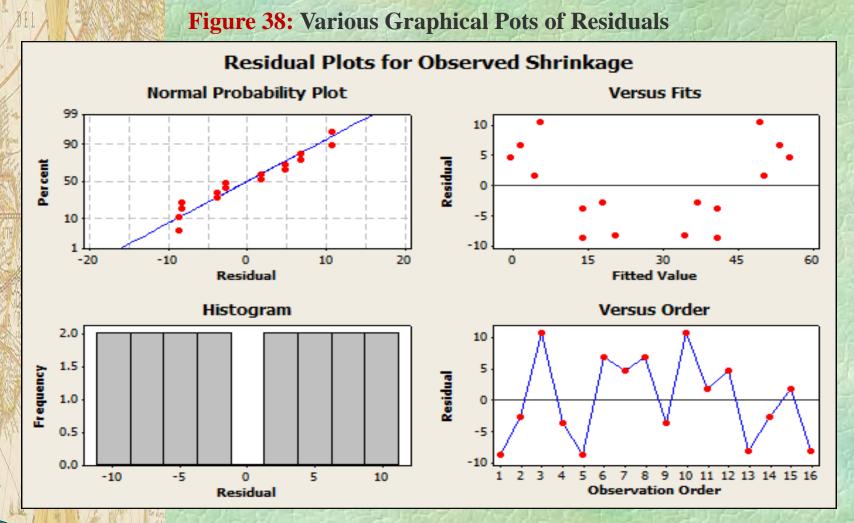

FRACTIONAL FACTORIAL DOE

Figure 36: Probability Plots for Part Shrinkage Probability Plot of Observed Shrinkage (x 10) Normal - 95% CI 99 27.31 Mean 21.07 StDev 95 Ν 16 0.765 AD 90 0.037 P-Value 80 70 Percent 60 50 40 30 20 10 5 -25 25 50 -50 75 100 0 Observed Shrinkage (x 10)

FRACTIONAL FACTORIAL DOE


Figure 37: Main Effects and Interaction Plots of Part Shrinkage

FRACTIONAL FACTORIAL DOE

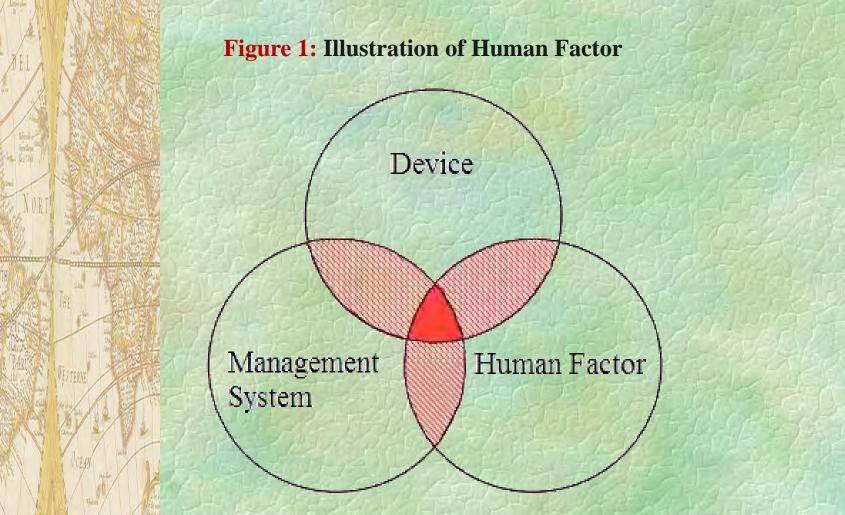
<u>kis</u>

M4 - LEARNING OBJECTIVES

Participant Shall be able to:

Z

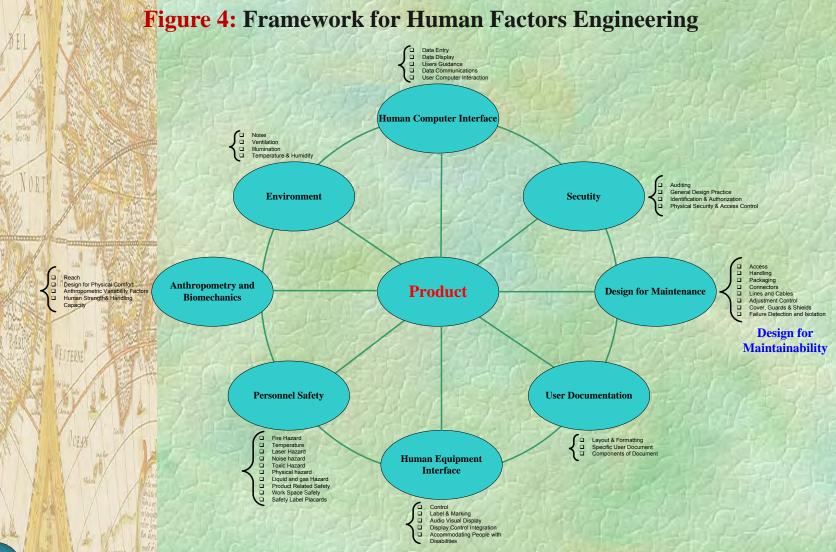
- **Identify means of reducing human error during design development.**
 - Identify and apply quantitative models for human behavior.
- **Identify the principles the design of human machine interface seeks to embody.**
- Learn the development of justifiable quantitative human error probabilities.
- Gain understanding of how to determine if provisions of suitable evidence that features included in the design are appropriate to general risk level.
- Gain understanding of how to determine if provisions of suitable evidence that features included in the design are appropriate to general risk level.
- Gain understanding of human factors expectations set by IEC 60601-1-6, IEC 62366 and ANSI | AAMI HE 75.
- Establish quantitative usability goals acceptance criteria for their company's products.
- **Gain understanding of how to determine and quantify human reliability.**
- Gain understanding of the extent to which human contributes to the general level of risk associated with the product design.


Adapt | Implement | Improve

What are Human Factors? Usability?

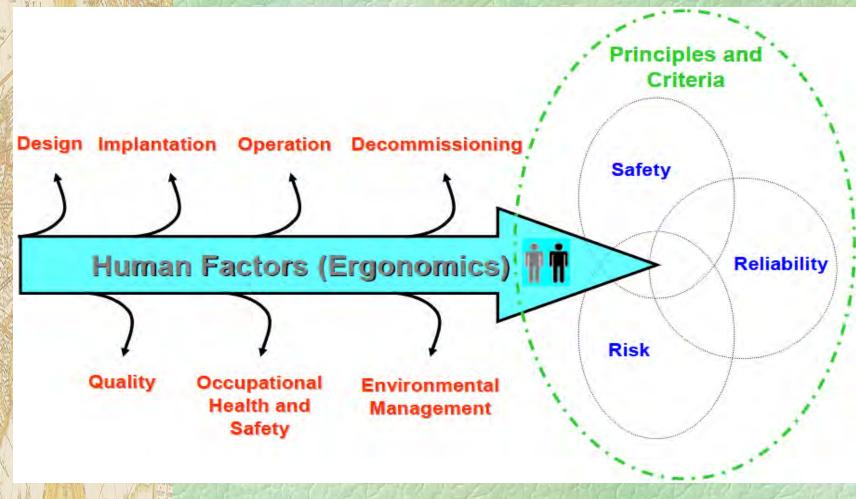
- Human Factors: "...the application of knowledge about human capabilities (physical, sensory, emotional, and intellectual) and limitations to the design and development of tools, devices, systems, environments, and organizations...." (ANSI/AAMI HE75:2009, Introduction)
- □ Usability: "Characteristic of the user interface that establishes effectiveness, efficiency, ease of user learning and user satisfaction" (ISO/IE 62366:2007, Definition 3.17).
- □ Human Reliability: The probability of successful performance of only those human activities necessary to make a system reliable or available.
- **Human Error:** Human Error is simply some human output which is outside the tolerances established by the system requirements in which the person operates.

The application of human factors engineering will "create a human-system interface that will operate within human performance capabilities, meet system functional requirements, and accomplish mission \ functional objectives."



Human Factor may be defined as an integration and application of scientific knowledge about the behavior of human beings, device and management systems (procedures, training, etc.) to improve their interactions in the workplace.

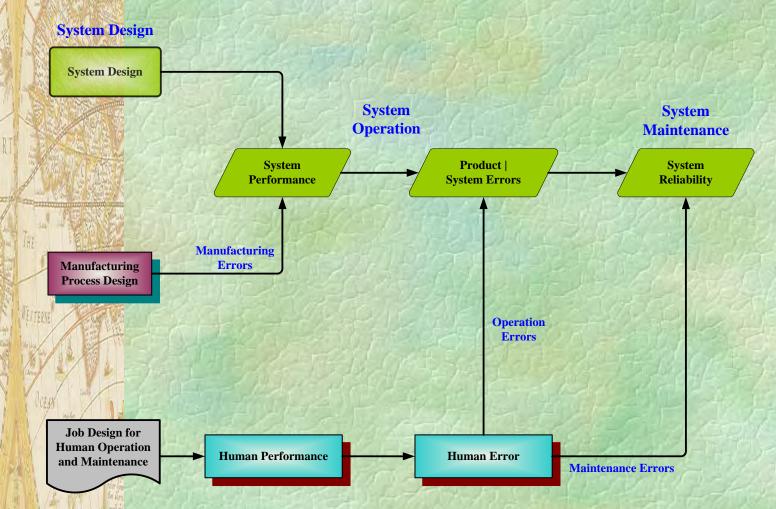
Objectives of Human Factors


- The first is to enhance the effectiveness and efficiency with which work and other activities are carried out. This includes such things as increased convenience of use, reduced errors and increased productivity.
- □ The second objective is to enhance certain desirable human values, including improved safety, reduced fatigue and stress, increased comfort, greater user acceptance, increased job satisfaction, and improved quality of life.
- To develop the optimal conditions for the user in work environment, to reduce physiological costs, to improve productivity, to facilitate instrument handling, to maximize the efficiency of operation and production system, and to minimize human errors ergonomics is essential.

<u>LIS</u>

Figure 6: Overview of the Framework for Human Factors Integration.

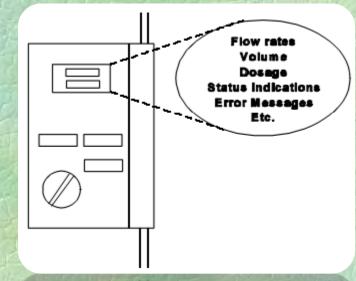
HUMAN FACTORS ANALYSIS


Table 2: Three Major Types of Human Factors Analysis

Item	Analysis Type	Description	Comments
hipine aphan aphan battar battar	• Visibility	 Determine visibility of operation or work area to operators and maintainers. 	It may be important (e.g., for safety considerations) that a person be able to fully observed the operation or work area.
And Andrew Andre	• Strength	 Used to determine the feasibility of activity sequences. Determine whether or not a person is able to carry out an activity that requires a certain level of human strength, i.e., to evaluate the ability of the person to carry, lift, hold, twist, push and pull objects in standing, bending, sitting, squatting,, lying, etc., body position. 	Strength analysis can be one of the most important criteria for the evaluation of a task.
COLUMN STATE	Accessibility	 Performed to identify design problems related to the inability of personnel to access an operation or work area, i.e., to detect possible collisions during an activity. 	Based on the size of men and women at a given percentile of the population.

HUMAN RELIABILITY CONSIDERATIONS FOR SYSTEMS

Figure 11: The Impact of Human on System and Process Reliability


HUMAN RELIABILITY CONSIDERATIONS FOR SYSTEMS

Medical Device Application

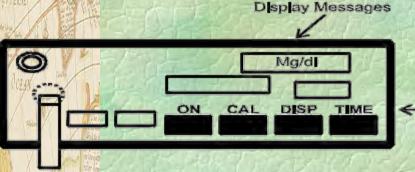
The following are some problems that apply to many medical devices and can lead to errors:

- Illogical or cumbersome control sequences;
- Unfamiliar language, symbols, or codes;
- Inconsistencies among display formats;
- Conventions that contradict user expectations;
- Uncertain or no feedback after input;
- Functions that are hidden from the user;
- Missing or ambiguous prompts, symbols, or icons;
- Un-signaled resets or defaults;
- No status information;
- Missing lock-outs or interlocks; and
- Requirements for complex mental calculations.

Figure 13: Infusion Pump

With current models, users often must retrieve and remember large amounts of information.

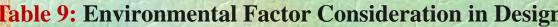
GENERAL PRODUCT DESIGN REQUIREMENTS


Table 6: Principles for Designing and Selecting Systems and Equipment				
Item No Design Factors		General Description and Criteria		
1	Simplicity in design	• The system or equipment design should be as simple as possible, consistent with the desired human-machine system functions, and compatible with the expected maintenance concepts. Simplicity Means more reliable.		
2	Hardware and interface standardization	• Equipment and human-machine interface designs shall be standardized to the degree practical and compatible with system functions and purposes.		
Vin 3	Software standardization	 Software shall be as standardized as possible so that applications that address common functions employ the same user dialogues, interfaces, and procedures. 		
4	Standardization for maintenance	 Identical interfaces, fasteners, switches or breakers, and connectors shall be used throughout a unit of equipment. Similarly, control, display, marking, coding, labeling, and arrangement schemes shall be the same for common functions. 		
5	Distinctive identification, interfaces, and interconnections	• Units of equipment or modules that have different functions shall be distinctive in their appearance and identification. Equipment with different functions shall have distinctive interfaces (control and display features, and connectors) so they cannot be interconnected or used erroneously.		
PART 6 DITENS	Design for common tools	 Whenever possible, system and equipment design shall minimize auxiliary equipment and the number of tools needed for maintenance by designing for common tools available in a maintainer's tool box. 		
7	Safety	 System and equipment design shall incorporate applicable system and personnel safety design criteria. These criteria include those that minimize human error under normal, degraded, or emergency conditions, and under adverse environments. 		
8 NOLAN	Fail-safe design	• A fail-safe design shall be provided for systems whose failure could cause catastrophic damage, injury to personnel, or inadvertent operation of equipment.		
9	Ruggedness	 Systems and equipment shall be sufficiently rugged to withstand handling during operation, maintenance, supply, and transport within the environmental limits specified in the applicable product specification. 		
1 Patient		Edu Parti CAL Grand CAL STREAM		

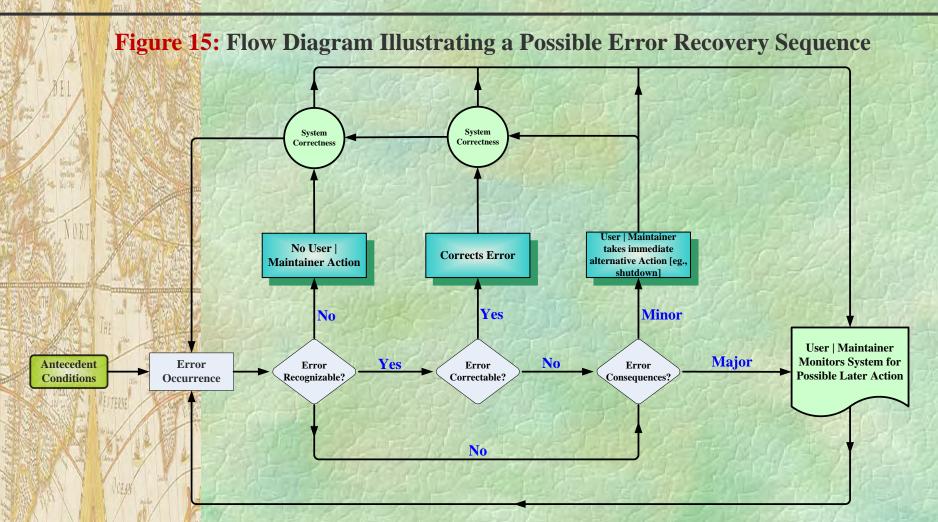
HUMAN FACTORS VALIDATION

Validate Safety of Use - FDA

- Demonstrates and provides evidence that a medical device, as designed, can be used safely and effectively:
 - By people who are representative of the intended users
 - Under expected use conditions
 - For essential and critical (high-risk) tasks

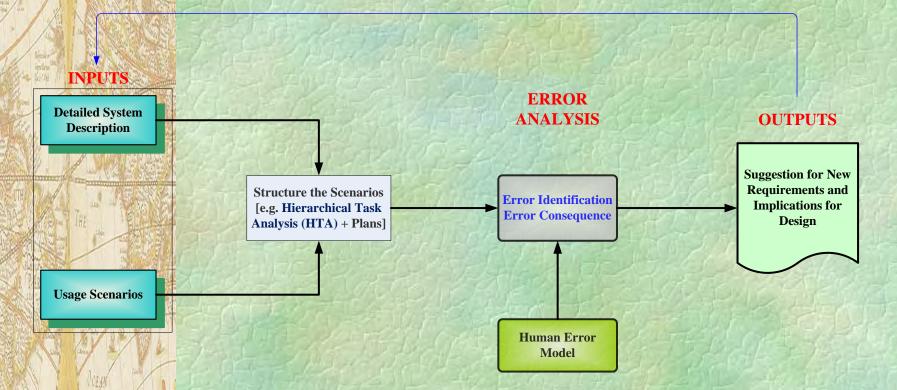

Figure 14 - Blood Glucose Monitor

- Are displays and labels legible?
- Are strips easy to clean and insert?
- Is device compact and durable?
- How difficult are timing operations?


SYSTEM DESIGN ENVIRONMENTAL CONDITIONS

Item No.	Environmental Factor	Human Factor Consideration		
1	Acoustic Noise	Consideration should be given to the effects of noise on device users, other workers, and the patient. All noise sources should be assessed.		
NORT 2	Interruptions and Distractions	A medical device's intended user might be interrupted or distracted while using the device. Designers should account for the type and frequency of these interruptions in their designs so that interruptions do not adversely affect device use. Workplace stresses and interruptions in use environments can distract device users and lead to use errors.		
TH. I to an IHE and	Lighting	Device displays should be designed for viewing under the lighting conditions in intended use locations. It is important to consider the specific lighting environments in which a medical device will be used and to sample lighting levels in representative locations by means of light meters.		
Marken and Aller Terrel	Temperature and Humidity	Medical devices should be designed to minimize their impact on surrounding temperatures and humidity levels that could affect the user's ability to use a device. Temperature and humidity extremes can degrade performance.		
The second secon	Surface Temperature	During normal use, the temperature of medical device surfaces and components that can come into contact with device users or patients should not exceed the limits specified in [ANSI/AAMI ES60601-1:2005].		
6 Vibration		The vibration of visual displays should not significantly compromise user performance. Usability testing should be performed to assess the impact of expected vibration on critical functions of the device and on the incidence of use errors.		

CHARACTERISTICS OF HUMAN ERROR



Three Characteristics: Obviousness (for self detection or detection by another), Corrected [recovery], and its Consequences

HUMAN ERROR ASSESSMENT METHOD APPLIED IN DESIGN

Figure 20: Technique for Human Error Assessment Process Early in System Design

Technique for Human Error Assessment (THEA). The method has been applied to several real world case studies and has demonstrated its suitability in evaluating a design for its vulnerability to human interaction failures which may become problematic once the design becomes operational.

HUMAN ERROR EXAMPLE

Human error caused Helios crash

A series of human errors caused Cyprus's worst airline disaster, a Greek inquiry report has concluded.

The Cypriot Helios Airways Boeing 737-300 crashed near Athens in August 2005, killing all 121 people on board.

The plane planned into a billeld near Athens

Lamada

CYPRUS

Area of crash

Varnave OpGrammatiko

ORalina

Athana

Airport

The flight from Lamaca to Prague flew on autopilot for nearly two hours before running out of fuel and slamming into a hillside.

The report said the pilots misread instruments regulating cabin pressure and misinterpreted a warning signal.

'Ineffective' measures

Maintenance officials on the ground were also blamed for leaving pressure controls on an incorrect setting.

GREECE

Kalamog

ATHENS

In addition, the plane's manufacturers Boeing took "ineffective" measures in response to previous pressurisation incidents in the particular type of aircraft, the report said.

The plane was starved of oxygen as it gained altitude, which rendered the pilots and passengers unconscious.

Two Greek air force fighter jets were scrambled when the aircraft lost radio contact.

Their flight crew saw the Boeing's pilots slumped over

the controls and a flight attendant struggling to control the aircraft before it crashed. Human errors may affect design and procedures, as well as decisions or actions for controlling transients or in reacting to perturbations and hardware failures.

Pilot misread instruments AND misinterpreted warning signals

Maintenance left pressure control in wrong setting

Manufacturer did not respond adequately to previous similar incidents.

Extract taken from BBC News Site http://news.bbc.co.uk/1/hi/world/europe/6036507.stm?ls

HUMAN ERRORS CAUSING USER-INTERFACE DESIGN PROBLEMS

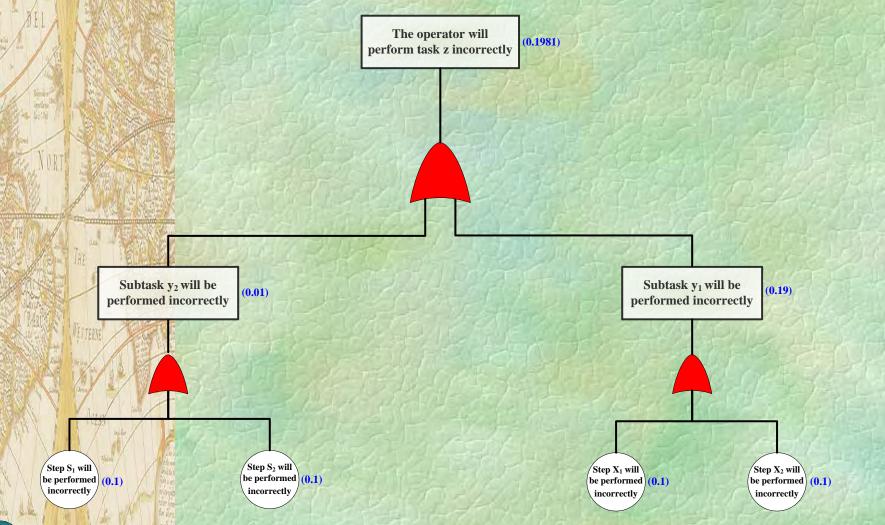
- User-interface medical device design-related problems that, directly or indirectly, cause users errors
- Poorly designed labels.
- Ambiguous or difficult to read displays.
- **Confusing device operating instructions.**
- **Unnecessary** confusing or intrusive device alarms.
- **Poor device designing requiring unnecessary complex installation and maintenance tasks.**
 - **Complex or unconventional arrangements of items such as controls, displays, and tubing.**

HUMAN ERRORS ANALYSIS METHODS FOR MEDICAL DEVICE

User-interface medical device design-related problems that, directly or indirectly, cause users errors:

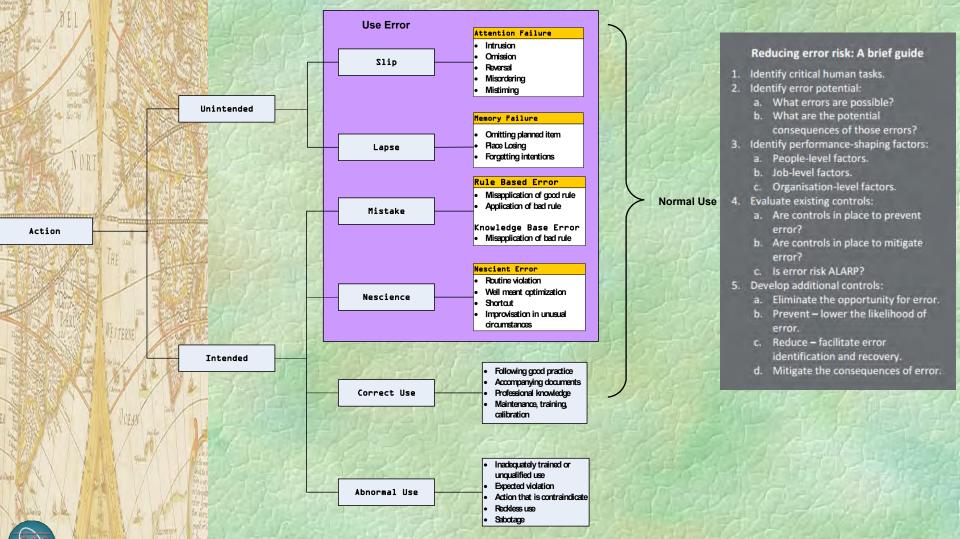
- **FMEA**
- **Barrier** Analysis.
- **Force Field Analysis.**
- **Root Cause Analysis.**

- Markov Model
- **Gault Tree Analysis (FTA).**
- Man-Machine System Analysis (MMSA).


Barrier Analysis

- ☐ This method is based on the premise that an item possesses various types of energy (e.g., pharmaceutical reactions, mechanical impact, and heat) that can cause property damage and injuries.
- □ The method basically attempts to identify various types of energies associated with items and appropriate barriers to stop them from reaching humans or property.

HUMAN ERRORS IN MEDICAL DEVICES


Figure 23: Fault Tree for Medical Device Operator Performing Task Z Incorrectly

<u>LIS</u>

MANAGING THE RISK OF USE ERROR

Figure 26: Erroneous, correct, and abnormal use and examples of use error [Adapted from IEC 62366:2007]

FACTS AND FIGURES ON HUMAN ERRORS IN MAINTENANCE

Some of the facts and figures associated with human error in maintenance are as follows:

- A study of electronic equipment revealed that 30% of failures were due to operation and maintenance error.
- □ The breakdown of this statistic shows abnormal or accidental condition (12%), manhandling (10%), and faulty maintenance (8%).
- □ In 1993, a study of 122 maintenance occurrences involving human factors concluded that the categories of maintenance error breakdowns were incorrect installations (30%), omissions (56%), incorrect parts (8%), and other (6%).
- □ A study of various tasks such as adjust, align, and remove indicates a human reliability mean of 0.9871. This means that one should expect errors by maintenance personnel on the order of 13 times in 1000 attempts
- □ In 1979 in a DC-10 accident at O'Hare Airport in Chicago, 272 persons died because of improper maintenance procedures
 - A study of maintenance operations among commercial airlines revealed that 40 to 50% of the time the elements removed for repair were not defective.

USABILITY APPLICATION IN DESIGN OF MEDICAL DEVICE

Medical Device

Any instrument, apparatus, implement, machine, appliance, implant, in vitro reagent or calibrator, software, material or other similar or related article, intended by the MANUFACTURER to be used, alone or in combination, for human beings for one or more of the specific purpose(s) of:

- Diagnosis, prevention, monitoring, treatment or alleviation of disease,
- Diagnosis, monitoring, treatment, alleviation of or compensation for an injury,
- Investigation, replacement, modification, or support of the anatomy or of a physiological process,
- Supporting or sustaining life,
- Disinfection of MEDICAL DEVICES,
- Providing information for medical purposes by means of in vitro examination of specimens derived from the human body.

USABILITY APPLICATION IN DESIGN OF MEDICAL DEVICE

Why is Usability Important?

Defined in ISO 9241:

• A measure of the effectiveness, efficiency and satisfaction with which specified users can achieve specified goals in a particular environment.

Poor Usability Results in:

- Anger and Frustration
- Costs Money
- Higher error Rates
- Equipment Damage
- Loss of Customer Loyalty
- Physical and Emotional Injury
- Decreased Productivity in the Workplace

Examples of Poor Design

Door Handles

- Handles afford pulling
- Trapped between doors
- Using a flat plate would constrain the user to push

- Wireless PowerPoint slide controller
 - Short press to go forward
 - Long press to go backward
- Refrigerator Temperature Control
 - One cooling unit
 - Two compartments and two controls

USABILITY APPLICATION IN DESIGN OF MEDICAL DEVICE

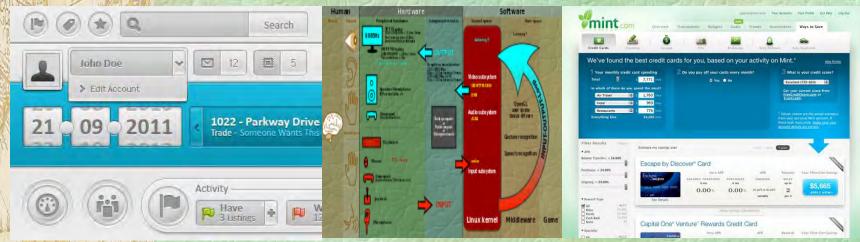
Content of the Usability Test Plan

The usability test plan should describe the following:

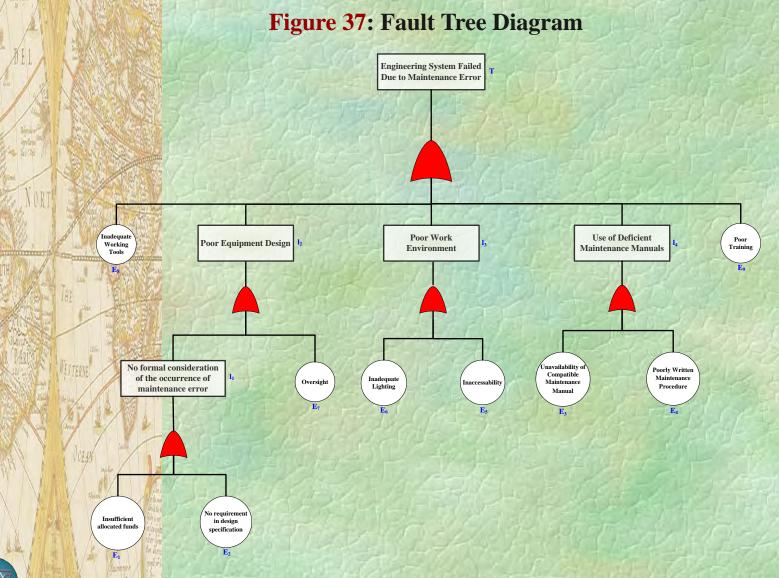
A. PurposeF. Usability objectivesB. SettingG. Data collectionC. ParticipantsH. Data analysisD. Prototypes or simulationsI. ReportingE. Methodology or test protocolJ. Tasks

Methodology or Test Protocol

- The method description in a usability testing plan, its actual protocol, and the subsequent report are much like the methodology section of any scientific report.
- The usability test plan should describe the usability study methodology and related test protocols in enough detail that another researcher or designer could replicate the study.
- It should cover all of the items relating to logistics [testing locations, number of participants, size of testing staff, duration of testing session, video recording, note takers, and data logging software].



VORT


FUNDAMENTALS OF SOFTWARE USER INTERFACE

Sample Software–User Interfaces

- **Embedded** software-user interfaces—those found in special-purpose medical devices—are plentiful.
- Examples include patient monitors, infusion pumps, and defibrillators. These devices tend to incorporate a set of dedicated controls, such as a number pad, a four-way cursor control, and special-purpose keys that allow users to interact effectively with the associated user interface.
- □ It is common for the software-user interface of larger medical devices to be based on a personal computer (PC) application running within a commercial operating system (e.g., WindowsTM) on a conventional computer screen.

PREDICTING THE OCCURRENCE OF HUMAN ERROR IN MAINTENANCE

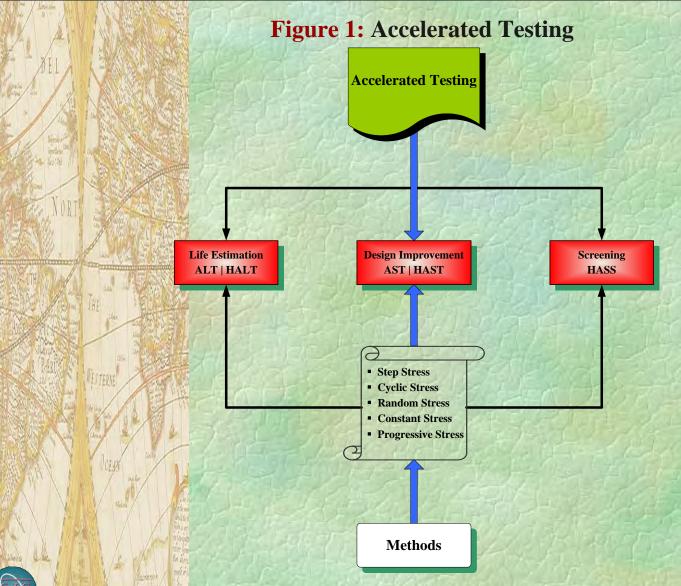
M5 – SEC 2 - LEARNING OBJECTIVES

Participant shall be able to:

- **Identify the different methods of stress application and determine the type of accelerated stress.**
- **Identify the required inputs and distinguish between ALT, HASS, and HALT.**
- **Determine** the appropriate stress parameter to accelerate.
- Utilize ALT model to estimate and quantify the life of an item or product through accelerated life data analysis.
- **Utilize ALT model to assess and demonstrate component reliability, operating life or MTTF.**
 - **Develop and understanding of how to design | develop ALT test plan, determine the number of units to be tested.**
 - **Explain how Design and Analysis of Experiment is used to support** ALT.

Adapt | Implement | Improve

APPLICATION OF ACCELERATED LIFE TESTS


Scope And Purpose

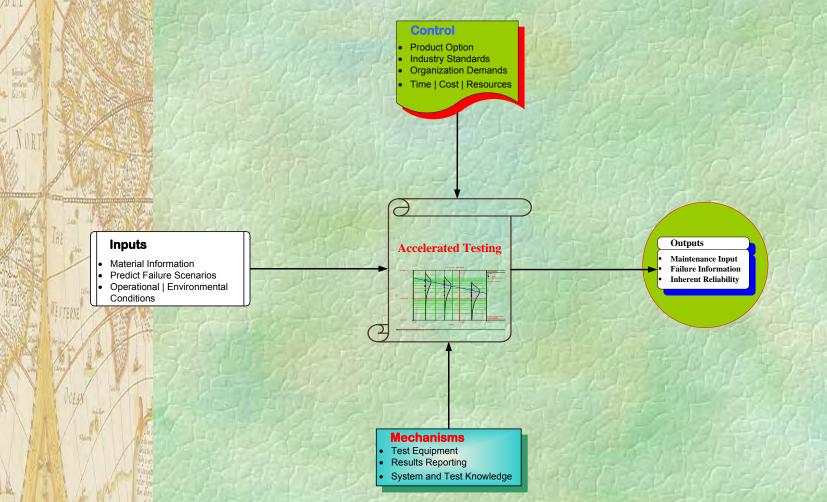
Accelerated testing allows designers to make predictions about the life of a product:

- By developing a model that correlates reliability under accelerated conditions to reliability under normal conditions.
- The purpose of accelerated testing is to determine and verify product performance in an expedient manner:
 - By utilizing a variety of high environmental or operational stress levels, singularly or in combination, with the purpose of determining the expected life span of a part or product in a shortened test time
 - **Timing:** Accelerated life test can be performed at any phase of product development cycle. Concept and planning phase is however the best time for application.
- **Benefits:** The major rational for performing accelerated life testing is to reduce product test time, resulting in schedule and cost benefits.

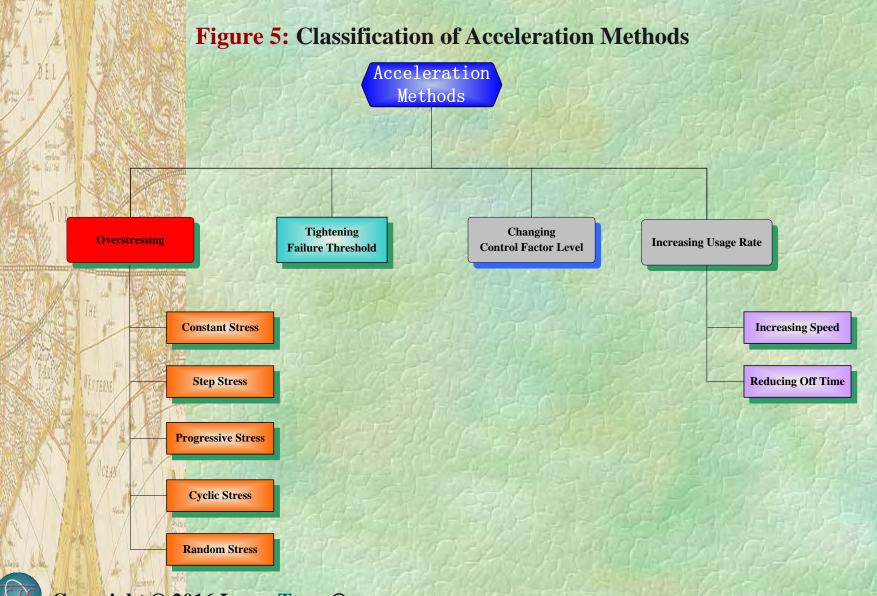
<u>AIS</u>

APPLICATION OF ACCELERATED LIFE TESTING


WHY IMPLEMENT ACCELERATED LIFE TESTING


Table 2: Summary of Reasons for and Applications for ALT

Item No.	Reasons for ALT	Application of ALT	
and I want	Improve yields	Detecting failure modes	
2	Reduce field return	Assessing component reliability	
	Better quality product	Evaluating the effects of stress on life	
4 The	Identify process failure	Demonstrating component reliability	
5	Reduce field service costs	To determine the product design capability	
6	Reduce DOA Early life failures	Comparing two or more competing products	
7	Sales advantages Customer satisfaction	To predict reliability and reduce the liability related to field failure	


GENERAL CONCEPT OF ACCELERATED TESTING

Copyright © 2016 <u>LEBENTECH</u>TM – Proactive Innovative Solutions for Success and Competitive Advantages

METHODS OF APPLYING ACCELERATED STRESS

DEVELOPMENT OF RELIABILITY TEST PLANS

Overview of ALT Test Plans

3 Level 4:2:1 Allocation Plan

Recommends three stress levels using the same approach described above for the 3 Level Best Traditional Plan. The proportion of test units tested at the high, mid and low stress levels will be calculated to be as close as 4:2:1 as possible as illustrated in table 14.

Let's say for example you specified that 300 units are available in the Total Number for a power element, then this plan will recommend testing 171 units at the high level, 86 at the mid level and 43 at the low level.

Temp °C	Proportion of Test	Number of Test	Probability	Expected Number
and the rease	Unit Allocated	Units Allocated	of Failure	of Test Units Failing
50	0.000	Hart Contra	0.001	
78	0.456	171	0.03	5
98	0.728	86	0.24	21
120	1.000	43	0.90	39

Table 14: Statistically Optimum Test Plan – Weibull Distribution

Reference 1 provides additional details of how the stress levels are determined and other parameters shown in table

MODELS APPLIED IN ACCELERATED LIFE TESTING

Statistics-Based Models: Parametric

Raleigh Distribution
 Weibull Distribution
 Lognormal Distribution

- Exponential Distribution

Statistics-Based Models: Non-Parametric

— The Linear Model

- Proportional Hazard Model

Physics Statistics-Based Models

— Erying Model

— Arrhenius Model

- Combination Model

- Inverse Power Model

Physics Experimental-Based Models

Fatigue Failures

Electromigration Model

Humidity Dependence Failures

Laser Degradation
 Resistor Degradation

Degradation Models

- Hot-Carrier Degradation

STATISTICS BASED MODEL APPLICATION OF ALT

Numerical Example – Inverse Power Relationship:

LebenTech Design Assurance engineer design three tests, each with eight units to evaluate the reliability of a type of surface mount electrolytic capacitor. The tests were conducted at elevated voltage levels of 80, 100, and 120V, respectively.

All units were run to failure, where a failure is said to have occurred when the capacitance drifts more than 25%.

• The failure times in hours are illustrated in table 12. Estimate the mean life at rated voltage of 50V. If a capacitor ran for 1500 hours without a failure at 120V, calculate the equivalent time the capacity would have survived at the rated voltage.

The Inverse Power relationship can be written as: $L = \frac{A}{v^b}$

Where L is the nominal Life, V the voltage stress, and A and B are constants dependent on material properties, product design, failure criteria and other factors.

STATISTICS BASED MODEL APPLICATION OF ALT

Table 12: Life Data at Elevated Voltage

		Voltage [V]		
	80	100	120	
Life [Hr]	1770	1090	630	
	2448	1907	848	
	3230	2147	1121	
	3445	2645	1307	
	3538	2903	1321	
	5809	3357	1357	
	6590	4135	1984	
	6744	4381	2331	
Mean Life [Hr]	4197	2821	1362	

STATISTICS BASED MODEL APPLICATION OF ALT

Solution

For the convenience of data analysis, we transform the above equation into a linear relationship as: In(L) = a + b In(V)

Where a = In(A) and b = -B. Both a and b are estimated from test data. The accelerated factor between the two stress level is:

$$\mathbf{A}_{\mathbf{f}} = \left(\frac{\mathbf{V}'}{\mathbf{V}}\right)^{\mathbf{E}}$$

The mean life at an elevated voltage is the average of the lifetimes at that voltage. The resulting mean lives are illustrated in tables 12 and 13.

Then we use the equation above to fit the mean life data at each voltage level. Simple linear regression analysis shown in figure 19 gives:

$$\hat{a} = 20.07$$
 and $\hat{b} = -2.683$

The regression line and raw data are plotted in figure 19. The estimates of A and B are: $\hat{A} = \exp(20.07) = 5.203 \times 10^8$ and $\hat{B} = 2.683$

Solution Continues

The mean life at 50V is:
$$\hat{L}_{50} = \left(\frac{5.203 \times 10^8}{50^{2.683}}\right) = 14.39$$
 Hours

The acceleration factor between 50 and 120V:

$$\hat{A}_{f} = \left(\frac{V'}{V}\right)^{B} = \left(\frac{120}{50}\right)^{2.683} = 10.47$$

Then 1500 hours at 120V is equivalent to 1500 x 10.47 = 15,705 hours at 50V.

That is if a capacitor ran for 1500 hours at 120V without failure, it would have survived 15,705 hours at 50V.

٠

Voltage [In V] In [100] = 4.6 In [120] = 4.8 In [80] = 4.8 Log Life [Hr] 7.5 7.0 **6.4** 7.8 7.6 6.7 8.1 7.7 7.0 8.1 7.9 7.2 7.2 8.2 8.0 8.7 8.1 7.2 8.8 8.3 7.6 8.8 **8.4** 7.8 Mean Log Life [Hr] 8.3 7.9 7.2

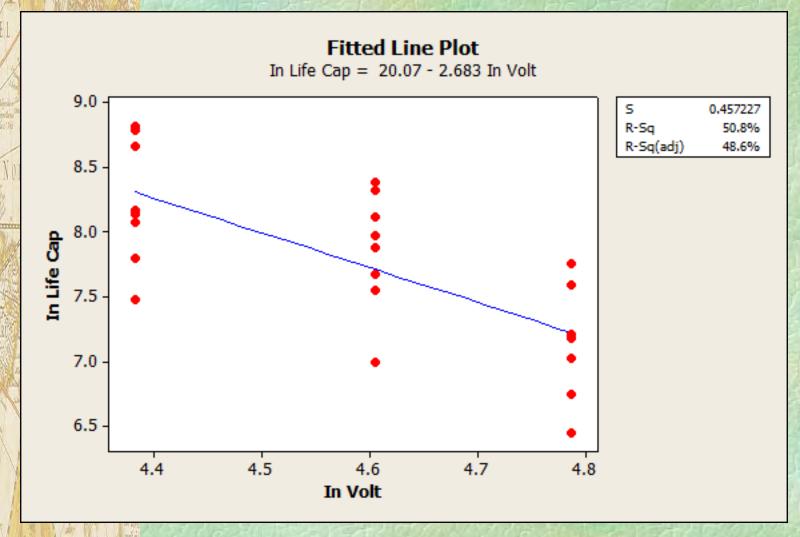
Table 13: Log Life Data at Elevated Voltage

Log Life: In [1770] = 7.478

Solution Continues

Regression Analysis: In Life Cap versus In Volt

The regression equation is: In Life Cap = 20.07 - 2.683 In Volt


S = 0.457227 R-Sq = 50.8% R-Sq(adj) = 48.6%

Analysis of Variance

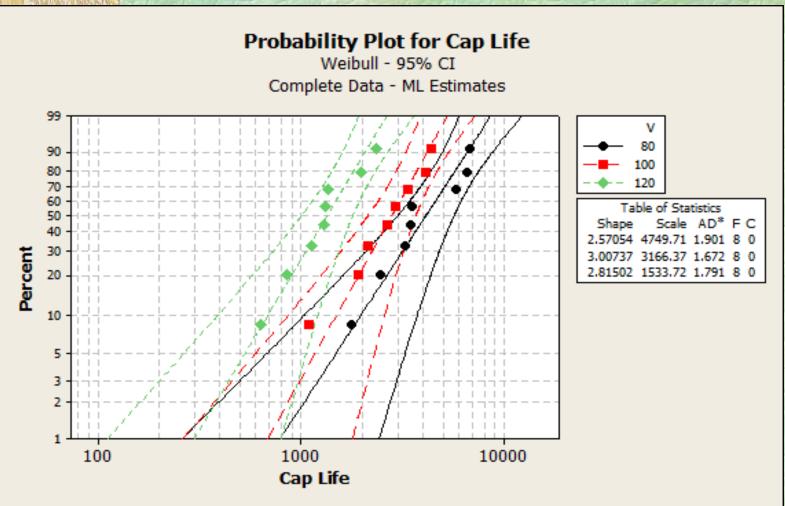
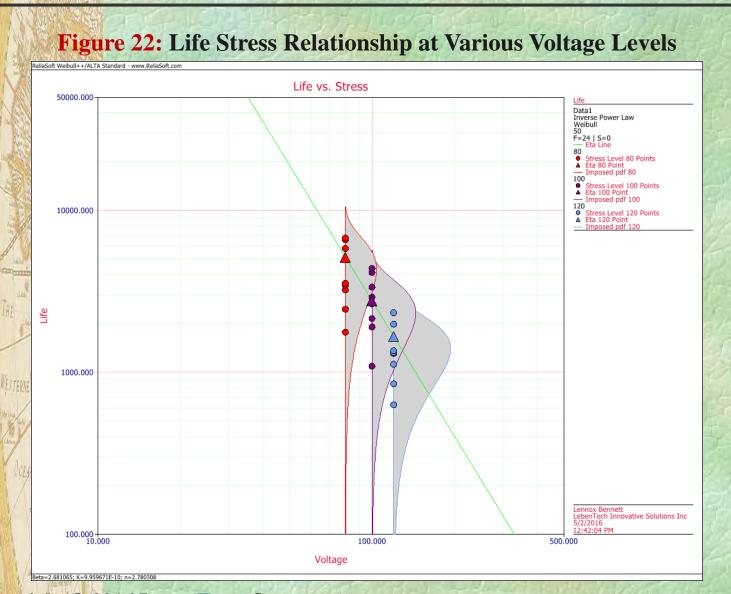

Source	DF	SS	MS	F	Р
Regression	1	4.74878	4.74878	22.72	0.000
Error	22	4.59925	0.20906		
Total	23	9.34803	(在1975)	any the	F.M.S.

Figure 19: Regression line Fitted to Mean Life of Capacitor

Figure 20: Probability Plot for Failure at Different Voltage Levels

GRAPHICAL REPRESENTATION


Figure 21: Data Setup for ALT Data Analysis at Various Voltage

urrent Project	A1 177	0			Main
ilter based on creator		Time Failed (Hr)	Voltage V	Subset ID 1	A STANDARD FOLIO
×	1	1770	80	ID I	BT Model () :
🚸 LIS-305 DFR	2	2448	80		20
Heibull++ Folios (3)	3	3230	80		TPL-Weibull
ALTA Folios	4	3445	80		Select Stress Columns
- Capacitor	5	3538	80		A rate statements
	6	5809	80		Analysis Settings
Electronic Module	7	6590	80		Analysis Settings
- Specialized Folios	8	6744	80		MLE
- Multiplots	9	1090	100		FM
- RBDs	10	1907	100		
Tools	11	2147	100		F=24/S=0 → Set Use Stress
- Reports	12	2645	100		
- Attachments	13	2903	100		Analysis Summary
Actaciments	14	3357	100		Parameters Beta 2.681065
	15	4135	100		Beta 2.681065 K (Hr) 9.959671E-10
	16	4381	100		n 2.780308
	17	630	120		n 2.780308 Scale Parameter (at Use Stres
	18	848	120		Eta (Hr) 18971.224152
	19	1121	120		Other
	20	1307	120		LK Value -199.945182
	21	1321	120		
	22	1357	120		
	23	1984	120		
	24	2331	120		
	25				
	26				
	27				
	28				
	29				
	30				
Current Project	31				Main Main
Project List	32				D Analysis
Projeccust	33				

Numerical Example – Voltage | Graphical Solution

GRAPHICAL REPRESENTATION

Copyright © 2016 LEBENTECH ® – Proactive Innovative Solutions for Success and Competitive Advantages

GRAPHICAL REPRESENTATION

Figure 23: Utilizing Reliasoft QCP to Determine Model Parameters

ALTA Staridard Folio; Ca	pacitor\Data1					
Acceleration Factor		Hr	2S-Both	Captions O		Capacitor\Data1 Acceleration Factor Upper Bound (0.95) = 23.783597 AF = 11.405237
QUICK CALCUL	ATION PAD	nits 🖂 🗠	Bounds	Options	~	Lower Bound (0.05) = 5.469291
Calculate	Reliability		Input			Capacitor\Data1 Reliability Upper Bound (0.95) = 0.977378
	Prob. of Failu	ire	Stres		~	R(t=8760) = 0.881644 Lower Bound (0.05) = 0.499836
Probability	Cond. Reliabi		Accelerated Stres	s 120		
	Cond. Prob. of I		Confidence Leve	el 0.9		Capacitor\Data1 Mean Life
1	Reliable Life	9				Upper Bound (0.95) = 30406.674085 Mean Life = 16866.751895 Hr
Life	BX% Life					Lower Bound (0.05) = 9356.081454
	Mean Life					
Rate	Failure Rate	2				E-
Acceleration	Acceleration Fa	ctor 📕	and the second	Report		1
Bounds	Parameter Bou	unds	Calculate	Close		Feed Print Clear

OCD

M6 - LEARNING OBJECTIVES

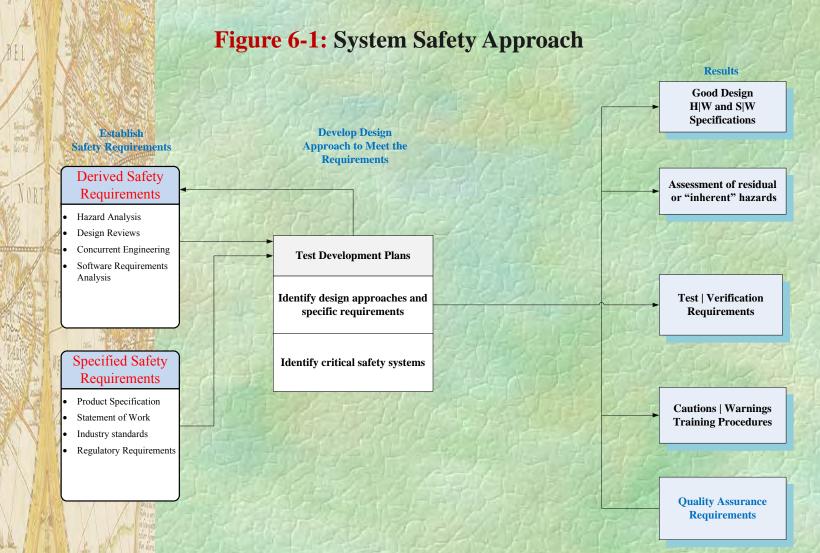
Participant Shall be able to:

- **Utilize results of risk analysis to prioritize design improvements.**
- Identify and distinguish between the elements of risk analysis.
- **Develop risk analysis process flow for their company's products.**
- Gain understanding of how to select the appropriate risk assessment tool for design evaluation.
- Utilize principles of risk assessment to estimate the value of risk.
- Gain understanding of how to recognize and determine critical path of Product Liability Analysis.
- Identify elements of liability claims.

- **Recognize** if the failure of their company product could potentially cause a chain of events with safety | liability implications.
- **Identify circumstances when product design compromise reliability of the component.**

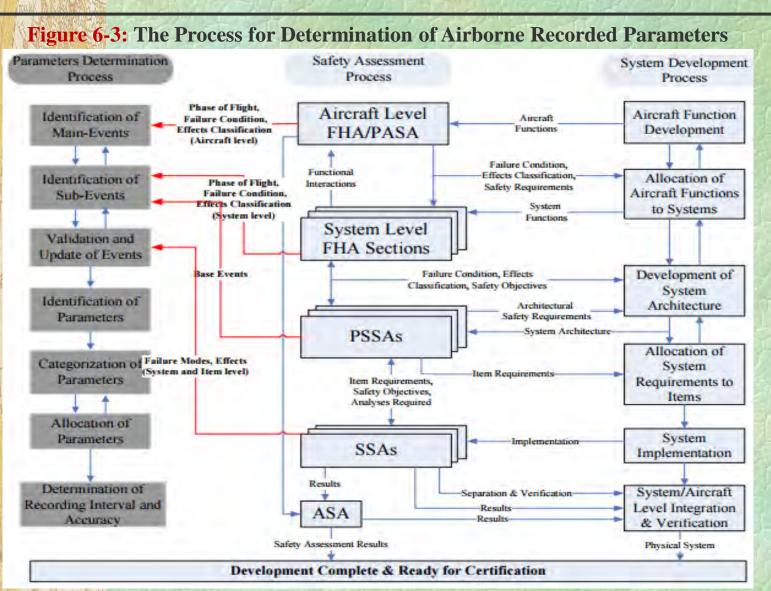
Adapt | Implement | Improve

NEED FOR ENGINEERING RISK AND SAFETY ANALYSIS


Demand for Risk Analysis

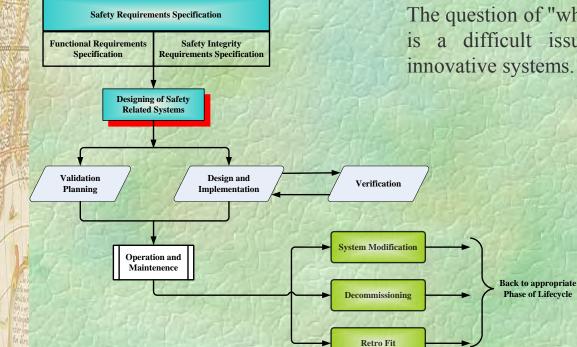
٠

۲


- The need for risk and safety analysis is driven by: excessive warranty cost, product unreliability, and product recall leading to liability damage.
- **Product** required to satisfy certification, or FDA Regulatory **Requirements**.
- Product required to meet specific standards [MIL-STD-882C, ISO 14971, AAMI HE75: 2009] or Safety Integrity Level (SIL) requirements.
- **Uncertainty** and risk target requirement of safety critical systems.
- Engineering assessment required to quantify the product acceptable risk criterion.
- **Product specification requirement and contract obligation.**
- **Quantification** of product residual risk and confirmation of acceptable level of probability of failure.

PRODUCT SAFETY ENGINEERING ASSESSMENT

<u>kis</u>


SAFETY ENGINEERING ASSESSMENT - AVIATION

PRODUCT SAFETY ENGINEERING ASSESSMENT

Figure 6-5: The Safety Lifecycle Model for Critical System



The aim of safe system design is to produce a system which has an "acceptable level of risk throughout its life".

The question of "what is acceptable?" a difficult issue for new and innovative systems.

PRODUCT SAFETY ENGINEERING ASSESSMENT

<u>KIS</u>

SAFE FAILURE FUNCTION

Analysis of Safety Risk

- Failure can happen in a safe or dangerous way.
- **Detection mechanisms are software enabled in the context of complex systems (involving microcomputers).**

SFF is represented by: SFF = $1 - \frac{\lambda_{du}}{\lambda_{Total}}$, $\lambda_{Total} = \lambda_{du} + \lambda_{dd} + \lambda_{su} + \lambda_{sd}$

Table 6-3: Safety Instruments Performance Requirements

Safety integrity Level (SIL)	Safety Availability	Probability of Failure on Demand Avg (PFD)	Risk Reduction Factor (RRF)
SIL 4	>99.99%	0.0001 to 0.00001	10,000 to 100,000
SIL 3	99.90% to 99.99%	0.001 to 0.0001	1,000 to 10,000
SIL 2	99.00% to 99.90%	0.01 to 0.001	100 to 1000
SIL 1	90.00% to 99.00%	0.1 to 0.01	10 to 100

Safety Availability: The availability of a SIS to perform the task for which it was designed as presented in percentage (%) in order of magnitude steps from 90% to 99% for SIL 1 up through 99.99% to 99.999% for SIL 4.

Probability of Failure on Demand Average (PFD_{ave}): Likelihood that a SIS component will not be able to perform its safety action when called upon to do so. A SIL is based on a PFD average of the safety function.

Risk Reduction Factor (RRF): Defined as 1/PFD_{avg}, the number of times that risk is reduced as a result of the application of a safeguard (typically a more convenient expression for describing SIF effectiveness than SIL or availability).

PRODUCT SAFETY ENGINEERING ASSESSMENT

Hazard Tracking Purpose and Objectives

Hazard tracking is recommended as a means to effectively managed hazard analysis data and facilitate a hazard discovery and hazard risk mitigation process. Objectives for performing analysis include:

- Provides a means to effectively influence product design and to ensure safety is optimized in new system.
- Provide data and information necessary to efficiently and effectively managed risk associated with safe operation of the device.
- Provides a means for documenting approaches, decisions and actions taken to eliminate or reduce risk of hazards.
- Provides a method for closed loop tracking of actions and/or decisions and ensure information is accessible and available when required.
- Provide means for effectively organizing, managing, and updating hazard data. Figure 6-16 provides a graphical illustration of the proposed closed loop tracking process.

VERIFYING COMPLIANCE OF SAFETY REQUIREMENTS

Verification of Design for Safety

- **Compliance** with requirements or standards is defined as implementing and verifying that all process, activities [analysis] and task identified on product functional specification and specific standard or regulation.
- **Compliance Testing: IEC 60601, MIL-STD-882E, and DO 278B.**
- **Certification:** Satisfactory fulfillment of requirements.
- **Risk Assessment: Verify Product is design for minimum risk.** Validation of safety of use [Effectiveness of risk control] – Human Factor
 - 1. Validating specific design modification.
 - 2. Validating overall device use safety.

Verification of product reliability: Prove that safety control requirements are properly met.

Verification involve the ability to demonstrate that a product design complies with the objectives and outputs defined in the applicable safety standard.

Figure 6-19: Articles Relating to Inadequacies in Medical Device System

The New Hork Eimes

As Technology Surges, Radiation Safeguards Lag

By WALT BOBDANCH Published: January 20, 2010

In New Jersey, 36 <u>cancer</u> patients at a veterans hospital in East Orange were overradiated — and 20 more received substandard treatment — by a medical team that lacked experience in using a machine that generated high-powered beams of radiation. The mistakes, which have not been publicly reported, continued for months because the hospital had no system in place to catch the errors.

Clarger becThe New Yor These Lonaire Raymond la redation hierapst relised concerns estual oversatation in the heatment of Freqerick Stein at a Velerans Affairs hospital in New Jensey in 2008. More

In Louisiana, Landreaux A. Donaldson received 38 straight overdoses of radiation, each nearly twice the prescribed amount, while undergoing treatment for <u>prostate cancer</u>. He was treated w machine so new that the hospital made a misca even with training instructors still on site.

In Texas, George Garst now wears two external one for urine and one for fecal matter — becaus radiation injuries he suffered after a medical ph

Table 6-4: Application of FMEA to the Proton Beam Radiotherapy System

System Function Specification	Potential Failure Mode Error	Potential Causes of Failure Error	S E ¥	Potential Effects of Failure Error	0 C C	Current Design Mitigati		D E T	R P N	Risk Reduction	Controlled Index
						Method of Prevention	Detection Means				
Definition of dose calculation parameters	Improper selection of physical beam model and/or calculation grid	Human Error due to time pressure or inadequate skill	7	Wrong dose distribution	4	Training and instruction manual		5	140	2	14
Target selection of dose presription for each target	Wrong setting of dose prescription type	Human Error	8	Wrong delivery	3	Human Error Analysis	Human Reliability	4	96		
47. 											
Couch origin of coordinates identification for absolute positioning	Wrong definition of couch origin of coordinates [small amounts in terms of 2 - 3 mm]	Human Error	5	Unintended normal tissue irradiated or CTV missing	4	Training plus operating instructions	FTA of Human Error	6	120	2	10
4											
Deliver accurate dose of radiation to patient	Inadvertent radiation [laser]	Control System Failure	9	Unintended normal tissue irradation	8	Redundant processor	Alarm	2	144	3	27
				Serious adverse clinical outcome		Scatter correction capability					
Deliver radiation dose to within absolute 5% and 5 mm	IV Overdose	Error in dose calculated	7	Delivery accuracy compromise and patent get harm [injury]	4	PHA, FMECA, and FTA application	Perform verification and validation testing	7	196	3	21
		Calibration	7	Toxicity	2	PM schedue Statistical analysis of	Acceptance	2	28		
		Dose delivery	7		6	dose delivery	testing	5	210	2	14

Table 6-5: Preliminary Hazard Analysis Generic Insulin Infusion Pump

A WAR AND AND AND	A DISCHARGE ALTER AND THE REAL	PAYAR AND SERVICE						Part of the second s
Control No.	Hazard Categories	Hazard Description	Failure Cause	Failure Effect	Probability	Severity	Hazard Risk Index	Risk Mitigation
IP 1.1	Hardware Source	Insulin Overdose	Delayed alarm detection due to sensor issue	The user receives more insulin than required to maintain required BG level	3	A	3A	Characterisation of sensor and signal detection verification
		Incorrect Treatment	Delayed alarm detection due to software issue	The user receives either an incorrect drug, or correct drug with incorrect concentration	3	в	3B	Software quality assurance aand validaation
IP 1.2		Insulin under dose	Motor Issue: Pump delivery mechanism fails and does not stroke	The user receives less insulin than required to maintain required BG level	3	A	3A	Reliability testing and evaluation of pump
1st								
IP 1.3	Electrical Source	Erratic electric circuit operations leading to overdose, under dose, or incorrect Treatment	Pump develops excessive static charge or experiences electrostatic discharge (ESD) that exceeds its ESD immunity	The user receives more insulin than required to maintain required BG level	4	A	4A	Verify performance per ESD standard
IP 1.4			Voltage level of the battery is too low	Result in patient experiencing hypoglycemia	3	A	3A	Monitoring of battery performance, Life and capacity assessment
IP 1.5		Excessive electromagnetic emissions by the pump, affects the pump itself, other device(s) worn by users	Battery impedance or contact impedance becomes too high	Patient seizure	4	в	4B	Circuit analysis
124								
IP 1.6	Operational Source	Insulin Overdose resulting due to Free Flow	Valves in the delivery path are broken	The user receives more insulin than required to maintain required BG level	4	A	4A	Mechanical Stress Testing
IP 1.7			Delivery path is damaged, creating a vent on the path that allows unintentional gravity flow	Result in patient experiencing hypoglycemia	4	A	4A	Material selection and stress testing
IP 1.8		-	Large temperature changes causing a mismatch between drug reservoir volume change and insulin density change	Patient seizure	3	A	ЗA	Robust design
2								
IP 1.9	Use Source	Overdose due to user's incapability of using the pump or configuring treatment plans	User is not sufficiently trained to operate the pump; user is not sufficiently intelligent to understand the instructions and use the pump correctly	Result in patient experiencing hypoglycemia	3	A	3A	Comprehensive analysis of pump-users interface. Human factors consideration.
IP 1.10		Under dose due to user's incapability of using the pump or configuring treatment plans	User falls asleep or goes into coma due to hypoglycemia	Result in patient experiencing hyperglycemia.	4	A	4A	Safety training, human reliability assessment
AU								
IP 1.11	Environment Source	Instability caused by electromagnetic interference give rise to overdose	Inadequate immunity or mitigation	Result in patient experiencing hypoglycemia	3	A	ЗA	User mobility consideration
IP 1.12		-	Improper manufacturing process	Patient seizure	4	В	4B	Process Control
IP 1.13		Instability caused by electromagnetic interference give rise to under dose	Physical damage to the pump or its subassemblies	Damage to the health of patients	3	в	ЗB	Inline Inspection, Mechanical stress testing
IP 1.14		Instability caused by electromagnetic interference give rise to incorrect treatment	Pump is used in the presence of electromagnetic disturbances that exceed its design specifications	Can result in transient and serious hypo- and hyperglycemia, wide glycemic excursions, and diabetic ketoacidosis	4	в	4B	EMC compliance test results verified against standard
IP 1.15		•	Failure to reinstall electromagnetic compatibility (EMC) components after service or reinstalling EMC components incorrectly		4	с	4C	Diagnostic testing after installetion

AL-	Table	6-6:	Preliminar	y Hazard	Analysis	Risk I	ndex Matrix	
1099062		Contract of the		J				

Semi Quantitative	Qualitative Severity Levels						
Probability Levels	E - Negligible	D - Minor	C - Serious	B - Critical	A - Catastrophic		
1 - Frequent	1 E	1 D	1C	1B	1A		
2 - Probable	2E	2D	2C	2B	2A		
3 - Occasional	3 E	3D	3C	3B	3A		
4 - Remote	4 E	4D	4 C	3B	4A		
5 - Improbable	5E	5D	5C	5B	5A		

MEDICAL DEVICE RELATED SAFETY REQUIREMENTS

Figure 6-23: Categories of Medical Device Safety-Related Requirements

Sufficient Information

- Effective Labeling
- Accompanying Documentation
- Instruction for use,
 - Production, and Packaging

Safe Design

- Care for Hygienic Factors
- Excessive Heating Prevention
- Mechanical Hazard Prevention
- Protection Against Electrical Shock
- Protection Against Radiation Hazards
- Care for Environmental Condition
- Proper Material Choice with Respect to Chemical, Biological, and Mechanical

Safe Function

- Reliability
- Accuracy of Measurements
- Warning for or Prevention of Dangerous Outputs

SOFTWARE SAFETY ANALYSIS

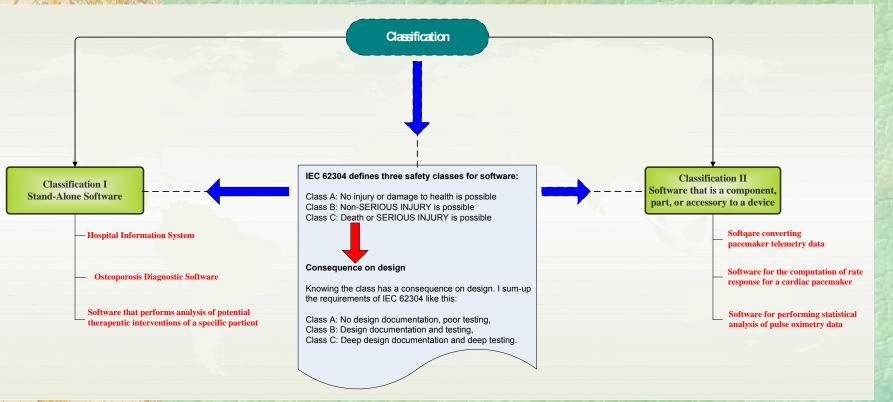
Basic Concepts

Software must be considered in the context of system safety. Some of the essential concepts in safety analysis are:

- **1. Risk: The possibility of undesired outcome.**
- 2. Safety: Freedom from risk.
- **3.** Mishap: Unintended events that results in a loss [Also called accidents].
- 4. Hazard: State of system that could lead to a mishap.
- 5. Software Hazard: A software condition that could lead to an unsafe condition in hardware.

Qualitative Risk: In a qualitative assessment of risk, possible outcomes are ranked in terms of severity (e.g., *catastrophic*, *probable*, *critical*, *marginal*, *negligible*) and hazard level (e.g., *frequent*, *probable*, *occasional*, *remote improbable*, *impossible*).

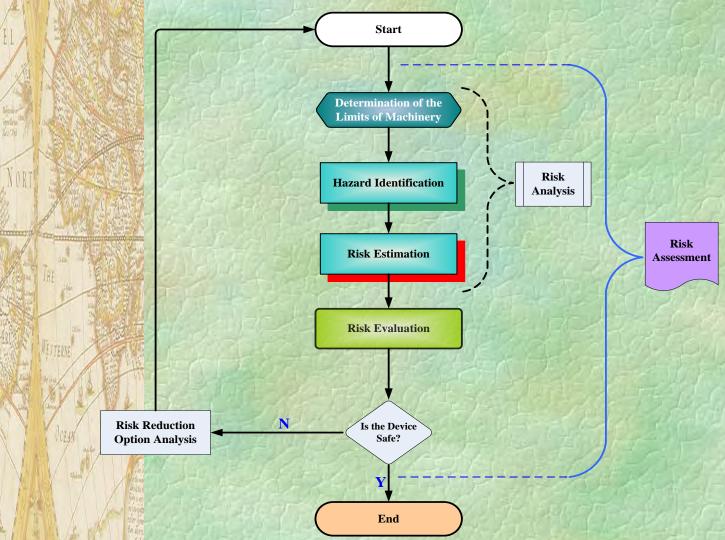
SOFTWARE SAFETY ANALYSIS


Table 6-7: Basic Causes of Software Safety Problems

Item	Cause	Description
1	Specification Error	• The software specification defines what [and sometimes] the software is performed. If a software/hardware interface is not planned properly, unforeseen safety problems may occur.
2	Design Error	• Errors such as incorrect algorithms, lack of self- tests or fault tolerance, and incorrect interfaces can result in safety problems.
Hi and a second	Coding Error	• Includes errors such as incorrect signs, endless loops, unused logic, syntax errors, etc., generally results in <i>reliability and quality</i> problems, rather than safety-related problems.
litera A No <u>E4</u> X NoE4X Nobe	Hardware-Induced Error	• Includes failure that results in the [undesired] transformation of a bit in a word, potentially changing the meaning of a software instruction.

Source: System Reliability Toolkit

SOFTWARE SAFETY APPLICATION


Figure 6-26: Classification of Medical Device Software

<u>kis</u>

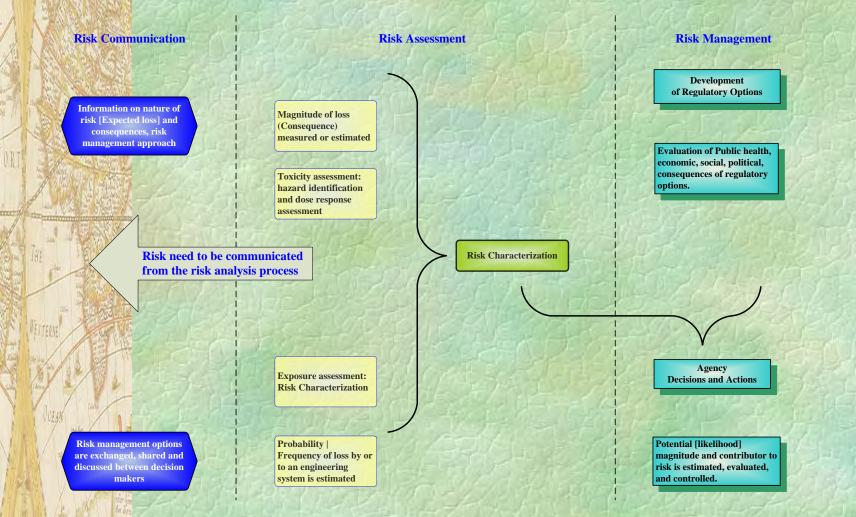

ENGINEERING RISK ASSESMENT OF PRODUCT DESIGN

Figure 6-28: Representation of the Risk Assessment Procedure – EN 1050

ELEMENT AND TYPES OF RISK ANALYSIS

Figure 6-29: Elements of Product Design Risk Analysis

ELEMENT AND TYPES OF RISK ASSESSMENT

Item	Risk Analysis Categories	Description of Application
	Health Risk Analysis	Involves estimating potential diseases and losses of life affecting, humans, animals, and plants.
2	Safety Risk Analysis	Involve estimating potential harms caused by accidents occurring due to natural events [climate conditions, earthquakes, brush fires], or human made products, technologies, and systems [i.e., aircraft crashes, technology obsolescence, or failure].
3	Security Risk Analysis	□ Involve estimating access and harm caused due to war, terrorism, riot, crime, and misappropriation of information [national security information, intellectual property].
TEANE 4	Financial Risk Analysis	□ Involve estimating potential individual, institutional and societal monetary losses such as currency fluctuations, interest rate, share market, market loss, bankruptcy, and miss appropriation of funds.
CEAN 5	Environmental Risk Analysis	□ Involve estimating loss due to noise, contamination, and pollution in ecosystem [water, land, air] and in space.

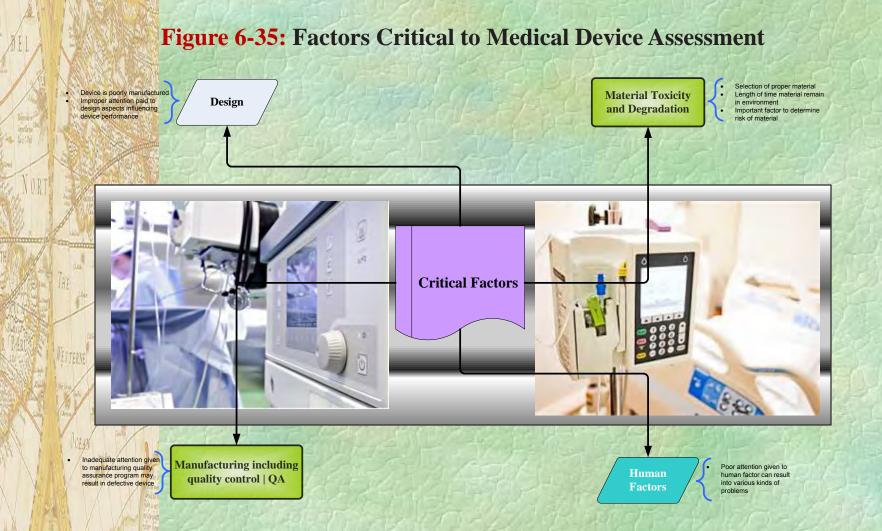

RISK ASSESMENT APPLIED TO MEDICAL DEVICES

Table 6-17: Reliability Analysis Methods Used to Support Risk Management

Risk Management Activity	Reliability Analysis Method	Application of Reliability Analysis Method				
	FMEA (Failure Mode & Effects Analysis)	 Perform and document a bottom-up analysis tracing part or process failures through to negative end effects 				
Risk Identification & Analysis	Fault Tree analysis	 Perform and document a top-down analysis tracing negative end effects to all possible sources at the part or process level 				
	FMEA	 Assign Risk Priority Numbers to estimate the severity of risks and group by criticality. 				
Risk Estimation	Fault Tree analysis	 Perform quantitative analysis to calculate risk severity by minimum combination of causal events 				
	Reliability prediction System modeling	 When a risk is the result of a part failure, quantify the probability that the risk will occur. 				
Risk Control Measures: Analyze 	FMEA & Fault Tree analysis	 Study the bottom-up (FMEA) or top-down (Fault Tree) effects of risk control measures at the part- or process-level 				
 Implement Evaluate Risk/Benefit Analysis 	Reliability prediction	 Quantify the effects of alternate part designs on improved part reliability and improved product safety 				
Review New Risks Completeness of Risk Control Measures	System modeling	 Quantify the effects of building in redundancy, dependency or parallel structure to system design; estimate the efficacy of preventive maintenance or repair activities 				
	FRACAS (Failure Reporting,	 Collect and analyze field data to track new and unexpected risks 				
Production and post- production monitoring & re-evaluation of found risks	Analysis, and Corrective Action System)	 Initiate risk evaluation and control plan development for newly detected risks using a closed loop process to ensural l risks are addressed 				
		 Analyze collected field data to quantify part or system failure behavior 				
	Weibull analysis	 Validate predicted performance by analyzing field data to demonstrate that design and safety requirements are being met 				

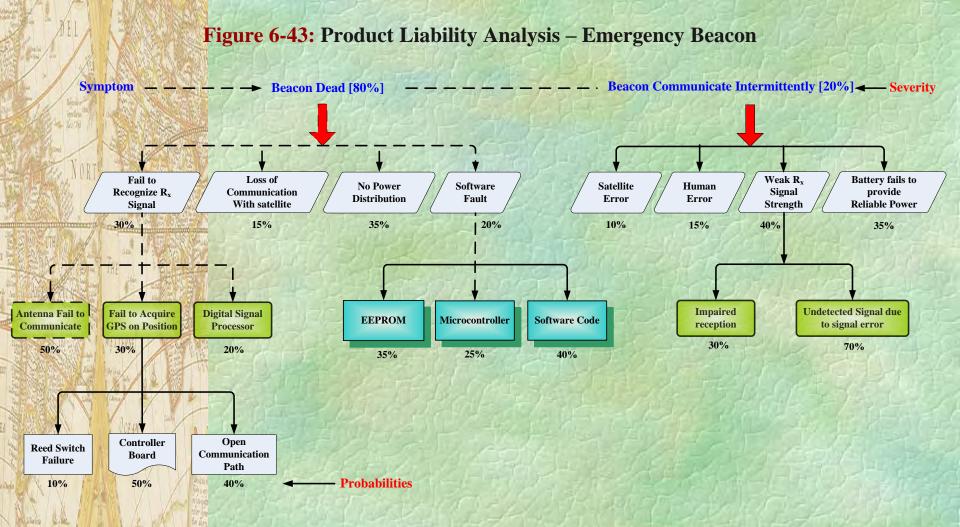
Source: ptc.com – Methods for managing product reliability and risk in the medical device field

ACTORS IMPACTING MEDICAL DEVICES RISK ASSESSMENT

TYPES OF PRODUCT LIABILITY

Product Liability

- Negligence legal
- Strict Liability legal
- Breach of warranty legal
- **Defects**
- **Failure to warn**


Negligence

You owe a duty of care to another
 The standards for that care have been breached
 As a result a compensable injury results
 There are damages or injury to the plaintiff

Risk assessments help reduce exposure to hazards and can assist in building a successful defense against a product liability claim.

PRODUCT PREVENTION LIABILITY ANALYSIS

KIS

PREVENTION OF PRODUCT LIABILITY

Guidelines to Prevent Manufacturing Defect

- Use proper labels and warnings about the use of the product.
- Use proper process control, quality control and inspection techniques to reduce manufacturing defects.
- **Build all safety features and devices as part of the basic product instead** of making them available as optional equipment.
- Use statistical sampling techniques to evaluate the adherence of production employees to design and manufacturing specifications.
- If the potential risk of the product in causing injuries is high, consider using 100 percent inspection instead of statistical sampling.
- **Document** all inspection, quality control, and testing activities and report the results to the product design and development department.

٠

ECONOMIC MODELS FOR PRODUCT WARRANTIES

Example Application

A turbine engine with a manufacturer's cost of \$1500 is sold under a 20,000 an hour PRW policy. The failure rate of the engine is 3 x 10⁻⁵ hours of operation. Assume the engine functions during its useful life. Find the expected unit warranty cost.

Solution

Substituting respective information in equation 7.4 for the exponential distribution.

$$E[X(w)] = c_0 \left[1 - e^{-\lambda w}\right] - \frac{c_0}{\lambda w} \int_0^w t \,\lambda e^{-\lambda t} dt$$
$$= c_0 \left(1 - e^{-\lambda w}\right) - \frac{c_0}{\lambda w} \left[1 - (1 + \lambda w) e^{-\lambda w}\right] \dots Eqn 7.5$$

For the case where $c_0 = \$1500$, w = 20,000 hours and $\lambda = 3 \times 10^{-5}$ hours of operation :

M7 - LEARNING OBJECTIVES

Participant Shall be able to:

Determine optimum warranty period.

٠

- Perform statistical analysis of product warranty data.
- Identify and be able to use different cost models.
- Utilize warranty data for prediction of future claims.
- **Identify types of warranty and ways to classify them.**
- **Identify factors involved in establishing a particular warranty policy.**
- Utilize warranty data to identify opportunities for quality and reliability improvements.
- **Identify methods of analyzing warranty data, and use warranty data to estimate reliability.**

Adapt | Implement | Improve

PRODUCT WARRANTY CONCEPTS

Warranty Functions

Warranties are tools. Their optimal use is determined by their contribution to production of higher quality commercial and consumer products within appropriate life-cycle costs. The following warranty functions are classified with those process characteristics in mind:

Assurance Validation: Warranties help assure buyer that the seller delivers a product whose design and manufacture, as well as materials and workmanship, conform to contractual | design specifications.

Incentivization. Warranties ostensibly incentivize the contractor as a matter of course. This function, however, becomes truly distinctive when guarantee provisions define penalties for failure to achieve target parameters and/or rewards for "over achievement" of such targets.

Insurance: Every warranty provides a measure of insurance against the risks of repair or replacement costs. This function becomes noteworthy or dominant when the warranty protects the buyer against substantial contingent losses due to support costs or to inadequacies in periods extending significantly into the post-acceptance.

PRODUCT WARRANTA DATA ANALYSIS

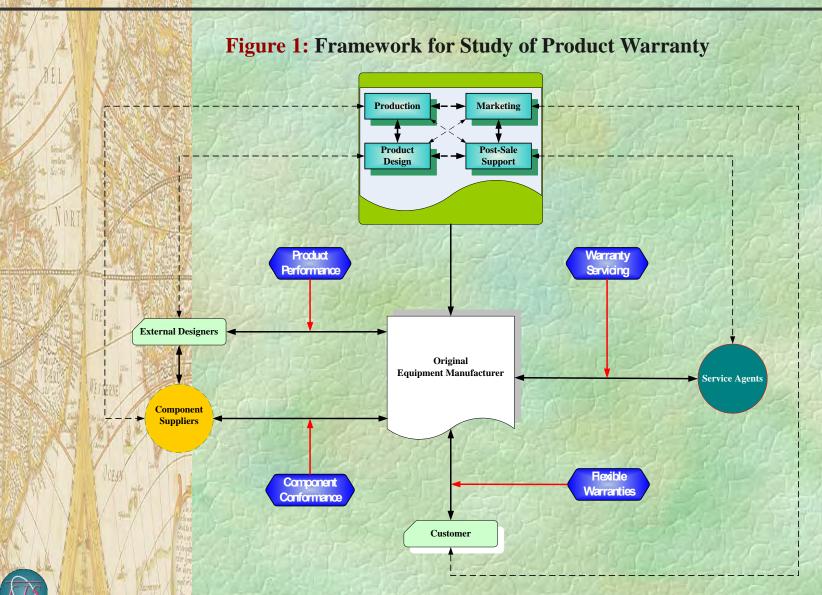
Warranty Data Mining

- **Product Data:** This data typically include product serial number, production data, plant identification, sales data, sales region, price, accumulated use, warranty repair history, and others which are analyzed for different purposes.
- **Failure Data:** When a failure is claimed the repair service provider should record the data associated with the failure, such as customer complaint symptoms, use conditions at failure, and accumulated use. After the failure is fixed, the diagnosis findings, failure modes, failed part number, causes, and post fix test results documented (Use of FRACAS, CAPA).
 - **Repair Data:** Such data should contain labor time and cost, part number serviced, cost of parts replaced, technician work identification and affiliation, date of repair and others.

When failures are claimed, information about the failed products is disclosed to the manufacturer. Such information is precious and credible and should be analyzed thoroughly to support business and engineering decision making.

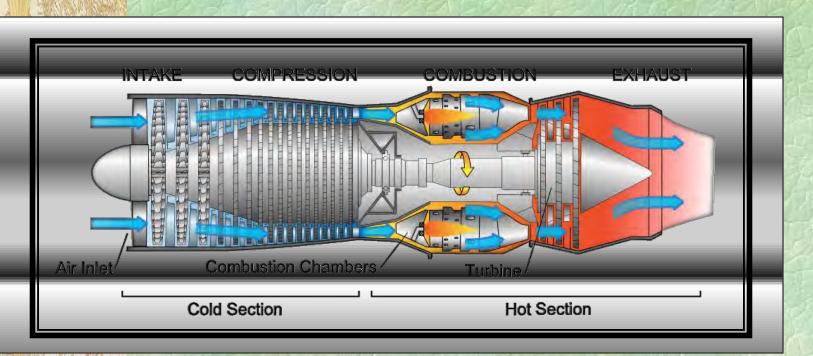
PRODUCT WARRANTA DATA ANALYSIS

Warranty Data Mining Strategy


Approach utilized will depend on a specific product and database. The strategy represented here consist of four steps:

- **1. Define the objective of the warranty analysis:** General objective can include but not limited to, determination of monetary reserves for warranty, estimation of field reliability, projection of warranty repairs.
- 2. Determine the data scope: In this step the analysis should clearly define what specific warranty data [product, failure, repair] in each category are needed to achieve the objective .
- **3. Create data search filters and launch the search:** In relation to warranty database, a filter is a characteristic of a product, failure or repair.
- 4. Format the data representation: Manipulate data into to format with which subsequent data analysis are efficient.

Data mining is a computer assisted process of searching and analyzing enormous amount of data and extracting the meaning of the data. Data mining uses a variety of tools, including statistical analysis, decision tree, neural net, principal component and factor analysis.



PRODUCT RELIABILITY AND WARRANTY

ECONOMIC MODELS FOR PRODUCT WARRANTIES

Solution Continues

$$E[X(20,000)] = \$1500 \left(1 - e^{-3x10^{-5}(20,000)}\right) - \frac{1500}{(3x10^{-5})(20,000)} \times \left\{1 - \left[1 + (3x10^{-5})x(20,000)\right]e^{-3x10^{-5}(20,000)}\right\}$$

= (1500)(0.4512) - (2500){1 - (1.6)x(0.54881)}
= 676.8 - 304.76 = \$372.76

<u>kis</u>

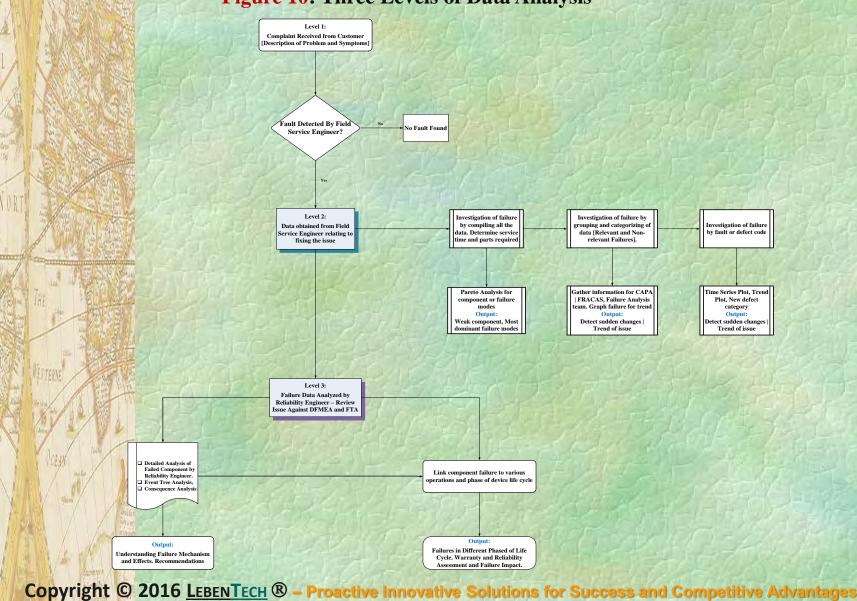
DETERMINE OPTIMUM WARRANTY PERIODS

Exponential Failure Times

For failure times represented by an exponential distribution, as in the case during the useful life of a product, the number of failures during warranty, N[w], is Poisson and $M[w] = \lambda$ and optimum warranty can be determined by:

$$w^* = \frac{2b_0b_1 - c_1\lambda}{2b_1^2}$$
.....Eqn 7.11

Example Application


Let's utilize the example from Thomas [1999] where a non-repairable item costs \$1000. Failures occurs during useful life at a rate of 0.5 per year, each cost the manufacturer \$1000.

Without the warranty, the manufacturer estimates that it would be necessary to incur a cost of \$2500 to market the item and, with warranty, the marketing costs would decline as $B[w] = [50 - 10 w]^2$. Thus $c_1 = 1,000$, $\lambda = 0.5$, $b_0 = 10$, $b_1 = 10$ and K = 2,500.

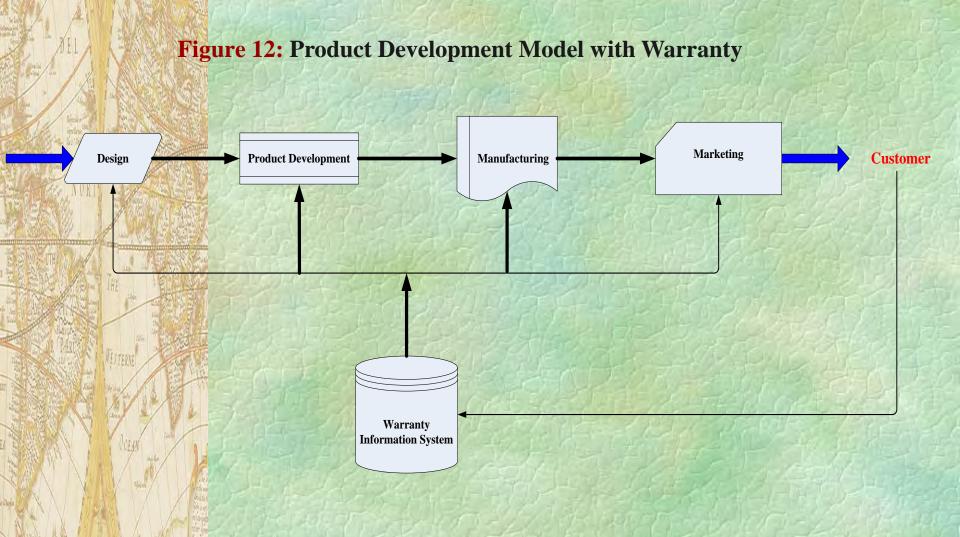
w* =
$$\frac{2*(50)*(10)-(1,000)*(0.5)}{2 x (10)^2}$$
 = 2.5 years

Reliability Assessment of Deployed System

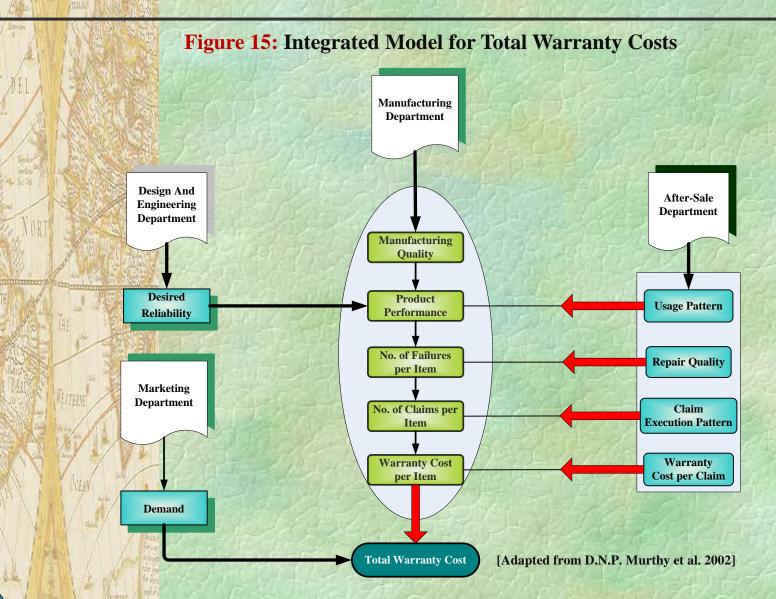
Figure 10: Three Levels of Data Analysis

DESIGN FOR WARRANTY COST REDUCTION

Table 7: Design Phase Warranty Cost Reduction Strategies


M

$$W_{c} \cong \sum_{i=1}^{M} N_{i} * (STD Cost_{i} + C_{material})$$


Item	Reduce Number of Occurrences	Reduce Events Process Cost					
	 Design out the event occurrence 1. Modify product features 2. Change how product works 3. Implement feature differently 	 Designing new (cheaper processes) 1. Design process around new technology 2. Design process to meet new market needs 3. Optimize process to reduce variability 					
HE 2 He HE	 Reduce the number of occurrences 1. Improve SW FW robustness 2. Increase HW reliability [reduce AFR] 	 Switching to a cheaper process 1. ID features or capabilities needed to support different process 					
El TERNE Como de la como de la co	 Proactive Application of Design for X 1. Design for Assembly 2. Design for Reliability 3. Design for Manufacturing 	 Reduce Standard Process Cost by: 1. Outsourcing 2. Product Changes 3. Process improvements 4. Supply chain re-engineering 					

Source: Adapted from Robert H Mueller, M.S., CQE Ops A La Carte & The Marisan Group

ELEMENTS OF WARRANTY COSTS

SYSTEM CHARACTERIZATION FOR WARRANTY COSTS

WARRANTY COST MODELS APPLICATION

Non-renewing Warranty – FRW Policy Example 2

- A notebook computer can be manufactured at a cost of \$150 and sold with a FRW policy. Units failing during warranty will be replaced at a cost to the manufacturer of \$150.
- The mean time to failure is 2.5 years and failure times are distributed Erlang with cumulative distribution function (cdf) as follows:

$$F(t) = 1 - (1 + 0.8t)e^{-0.8t}, t \ge 0$$

This represents a standard form of Erlang distribution with $\lambda = 0.8$ and k = 2; therefore, applying the single-failure assumption in equation 7.16 for the expected cost gives:

$$C_{s}(w) \approx C_{0} + C_{1}F(w)$$

$$C_{s}(w) = 150 + 150(1 - (1 + 0.8w)e^{-0.8w}), w \ge 0$$

$$C_{s}(w) = 300 - 150(1 + 0.8w)e^{-0.8w}, w \ge 0$$

M7 - INTERACTIVE EXERCISE

Simple Warranty Example:

Let's assume that a manufacturer of GPS devices plans to offer a 6-month warranty on the devices that cost \$150 each to produce. The expectation is to sell 15,000 devices and an internal test program indicates that the Mean-Time-To-Failure (MTTF) is 4 years after a stress-screening period. How much should the production cost be increased to cover the warranty cost?

W = 6 months C₀ = \$150 (without warranty cost) MTTF = 48 months N = 15,000 units

The expected number of failures is:

 $\mathbf{F(t)} = \mathbf{N} \left[\mathbf{1} - e^{-(t/\mathbf{MTIF})} \right]$

So that the number of failures over the interval dt is:

$$\mathbf{df} = \left(\frac{\mathbf{N}}{\mathbf{MTTF}}\right) \mathbf{e}^{-\frac{\mathbf{t}}{\mathbf{MTTF}}} \mathbf{dt}$$

M8 – SEC 1 - LEARNING OBJECTIVES

Participant shall be able to:

- **Develop understanding of specifying software reliability requirements. Distinguish between the different methods of allocating reliability to modules.**
- Identify and utilize different design analysis methods to validate software design during development.
- **Understand** how the reliability of the software system can be measured and how growth models are used to predict reliability.
- **Distinguish** between formal specification (specification errors & omission) and formal verification (programming & some decision errors).
 - **Identify means of verifying that the specified dependability attributes** (reliability, availability, safety and security) have been met by the system.

Adapt | Implement | Improve

SOFTWARE RELIABILITY OVERVIEW

DFR Fundamentals

Reliable software will be achieved through the implementation of structured software design methodology, independent testing, design reviews, verification, validation, and quality evaluation audits. These coordinated efforts are described in the Software Development Plan.

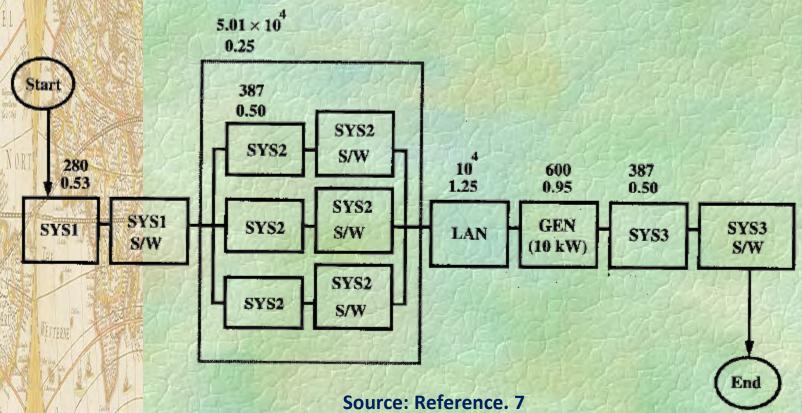
The design assurance and reliability engineer are responsible for the collection and analysis of operational software problem data obtained from software Problem Trouble Reports. The analysis activities can include:

Problem Density Analysis - the problems per thousand lines of source code are tracked and analyzed.

SOFTWARE RELIABILITY OVERVIEW

DFR Fundamentals

- Problem Category Analysis The Software Problem Trouble Reports are categorized by problem (software/code, documentation, design, logic) and investigated.
- **Open Problem** Analysis Priorities are assigned to the open problems for analysis. Reliability and safety problems will receive a high priority.
 - **Problem Cause** Analysis It is recommended for trend analysis to be **performed to identify both good and bad trends.** If the trend is significant, the **root cause is determined, so the appropriate steps can be taken**.


The analysis of operational software will indicate where more attention to reliability/quality is required. It also provides indicators as to where improved techniques should be instituted throughout the project.

٠

SOFTWARE RELIABILITY OVERVIEW

Figure 2: Representative Example of Predicting Reliability

Reliability modeling methods are used to model combined HW/SW systems for the purposes of reliability estimation and allocation need to accurately assess the interdependence between individual software elements, the hardware platforms on which these software elements execute, and the services provided by the system being analyzed.

General Perspectives:

- Software reliability is defined as the probability of failure-free software operation for a specified period of time in a specified environment [ANSI91].
- Software Quality also includes factors such as functionality, usability, performance, serviceability, capability, installability, maintainability and documentation.
 - A software system is an interacting set of software subsystems that is embedded in a computing environment that provides input to the software system and accepts service (outputs) from the software.
 - **Expected Service** (or 'behavior') of a software system is a timedependent sequence of output that agrees with the initial specification from which the software implementation has been derived [for the verification purpose] or which agrees with that system users have perceived the correct values to be [for the validation purpose].

General Perspectives:

Failures – A failure occurs when the user perceives that the program ceases to deliver the expected service.

Severity Class	System Capability Impact
K 机维尔尔和17月,14日本	Basic Service Interruptions - Catastrophic
2	Basic Service Degradation - Major
3	Inconvenience, Immediate Correction Necessary
4	Minot Effect, Correction Deferrable

Table 1: Failure Severity Class Classification

Outage – An outage is a special case of a failure that is defined as a loss or degradation of service to a customer for a period of time [called outage duration].

A failure resulting in the loss of functionality of the entire system is called a system outage.

Common Types of System

Command Driven System – A system in which the emphasis is on commands developed to support user's functionality and operational profile. Utilizes the software command to accomplish a function/operation.

Data Driven System

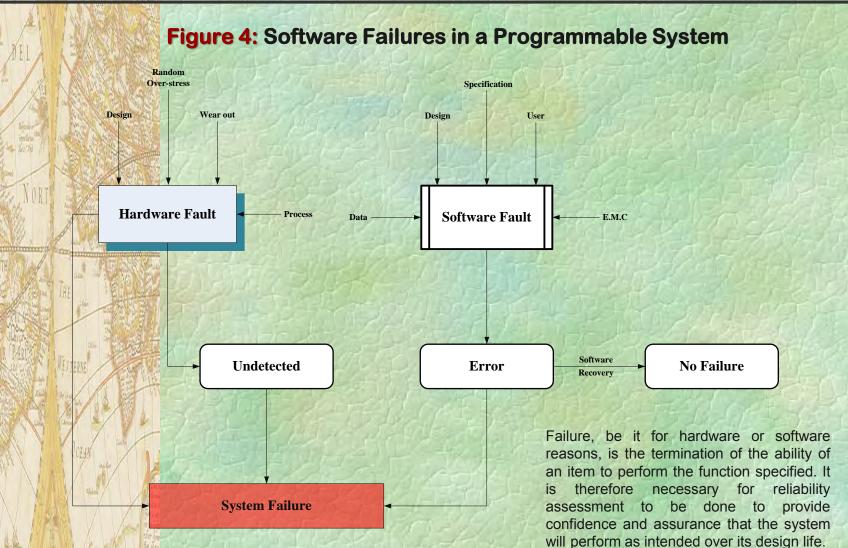
- **1. Financial billing systems are commonly data-driven.**
- 2. Reliability you want to evaluate is the probability of generating a correct bill.
- 3. An operational profile must be developed for each subsystem.

Occurrence Probabilities – In general there are two ways to determine occurrence probabilities for operations:

- **1. Count the occurrence of operations in the field**.
- 2. **Rely** on estimates derived by refining the functional profile.

- **Understanding Operating Profile**
- **Operation Profile** A profile can be defined as a set of distinct [only one can occur at a time] alternatives called elements, each with a probability that it will occur.
- If element A occurs 70% of the time and element B 30% for example, the profile is A, 0.7 and B, 0.3.
 - **Functional Profile** A functional profile is a user-oriented profile of functions, not the operations that actually implement them.
 - The operational profile, which is a quantitative characterization of how the system will be used, is very essential in software reliability engineering.

Understanding Operating Profile


Example – In a PBX application, there are 80 telephone additions, 70 removals, and 800 relocations or changes per month. Online-directory updating represents 5 percent of the total use in system administration mode.

Lets assume that the occurrence probabilities for the systemadministration mode is 0.02.

Function	System Administration Mode Occurrence Probability	Overall Occurrence Probability		
Relocation Change	0.80	0.0160		
Addition	0.08	0.0016		
Removal	0.07	0.0014		
Online-directory updating	0.05	0.0010		

Table 2: Sample Initial Functional Profile Segment

- Mean Time to Repair [MTTR] This represents the expected time until a system will be repaired after a failure is observed.
- Availability This is the probability that a system is available when needed. Typically it is measured by: Availabili ty = $\frac{MTTF}{MTTF + MTTR}$
- **Failure Data collection Two types of failure data, namely** *failure-count data* and time-between-failures data, can be collected for the purpose of software reliability measurement.

Failure Number	Failure Time (sec)	Failure Interval (sec)
R WITTERNE	5	5
	15	10
and the state of t	30	15
Nerry 4	40	10
5 4 4 4	55	15 2014
6	60	5
	75	15

Table 6: Time – Based Failure Specification

ALL AND AND A PROPERTY AND A PROPERT	Tanare Based Fanare op	
Time (sec)	Cumulative Failures	Failure Interval
15	2	2 0 -
100 - 30	PHOP S STORES	CLE 3 HISTO
45	8	3
Vapr 80	9	
120	11-	2
150	15	4
200	20	5

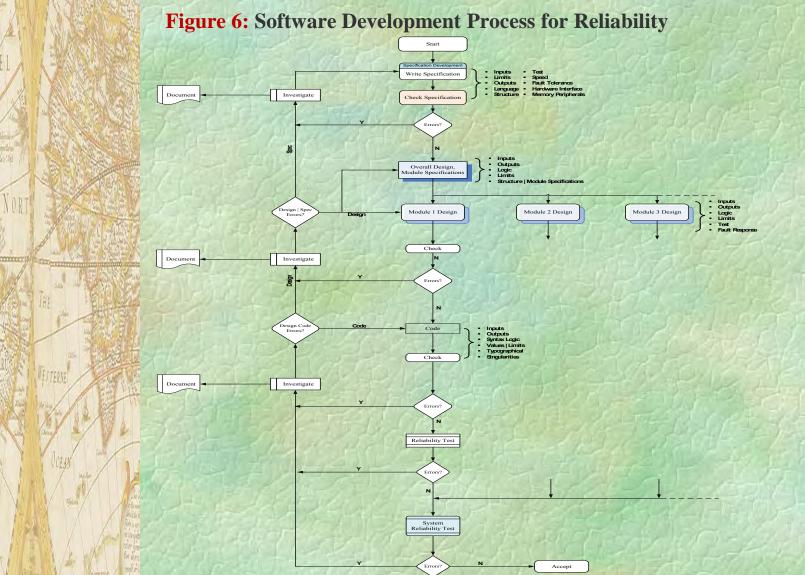
 Table 7: Failure – Based Failure Specification

Software Reliability Measurement – Measurement of software reliability includes two types of activities:

- **1. Reliability Estimation** This activity determines the current software reliability based on applying statistical inferences techniques to failure data obtained during system test or system operation.
- 2. Reliability Prediction This activity determines the current software reliability based upon available software metrics and measures .

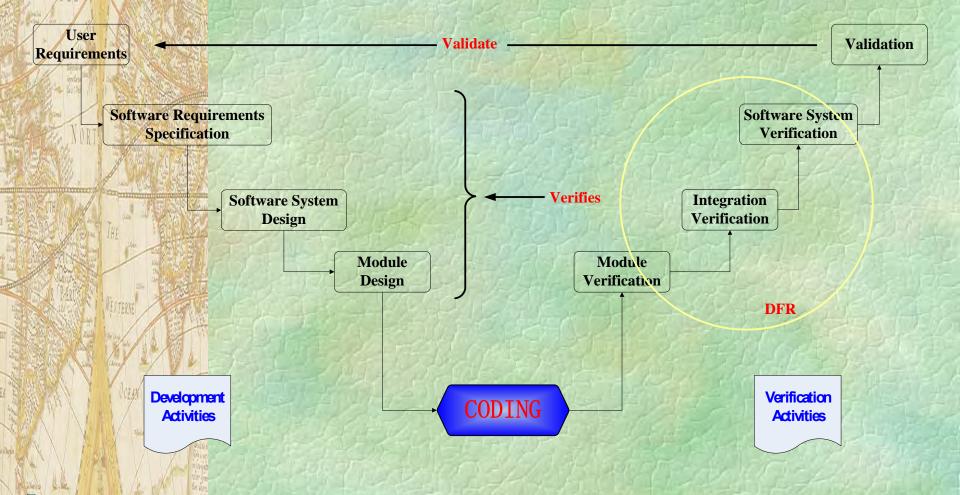
KIS

DESIGNING SOFTWARE FOR RELIABILITY

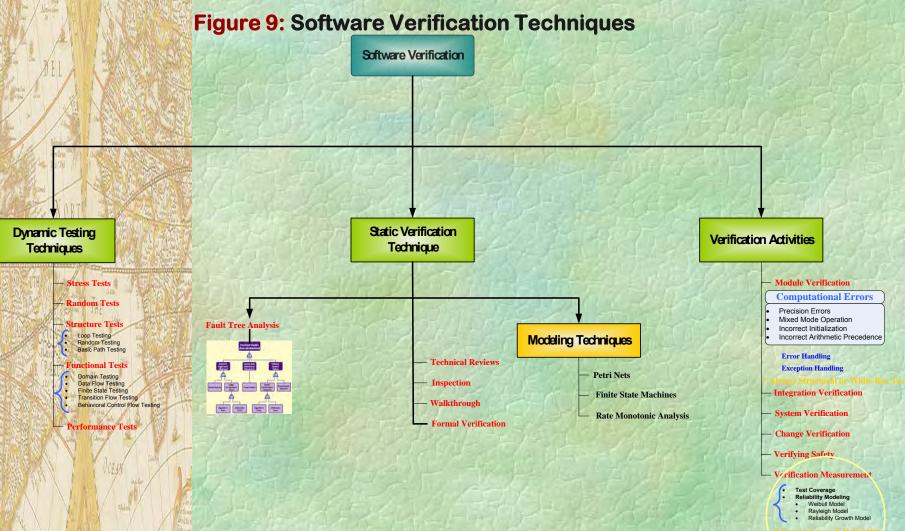

Good Reliability Design Engineering would:

- Use redundancy | diversity for reliability.
- **Use consistent error handling.**
 - Use quality development tool.
- Use good architectural infrastructure.
- Utilize built-in application health checks.
 - Follow established application design guidelines.
 - **Incorporate reliability requirements in the specification.**

Design Concepts


- 1. The process of designing for reliability involves looking at the application's expected usage pattern, specifying the reliability profile, and engineering the software architecture with intention of meeting the profile.
- 2. DFR includes ensuring that data input and data transformations, error-free state management, and noncorrupting recovery from detected failure conditions are pertinent elements of an application to operate failure free.
- **3.** Creating a high-reliability application depends on the entire software development life cycle from early design specifications, through building and testing, to deployment and ongoing operational maintenance.

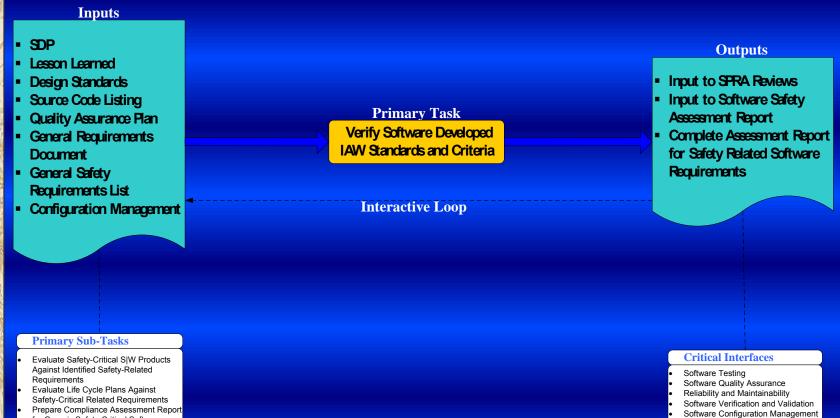
FUNDAMENTAL ELEMENTS OF SOFTWARE DEVELOPMENT



FUNDAMENTAL ELEMENTS OF SOFTWARE DEVELOPMENT

Figure 8: Relationship of Software Development and Verification and Validation Activities

SOFTWARE DESIGN VERIFICATION


Static Analysis Tool Developed by AdaCoreb: CodePeer, GNATPro, SPARK Pro, Qgen Model-Based Development Tool

15.000

PRINCIPLE OF VERIFICATION AND VALIDATION

Figure 10: Software Requirement Verification – Safety Critical Design

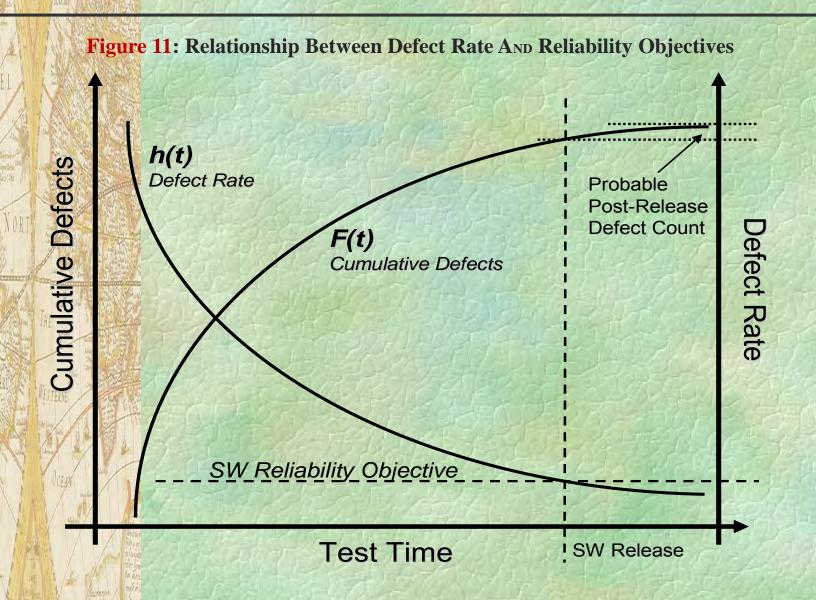
for Generic Safety-Critical Software Requirements

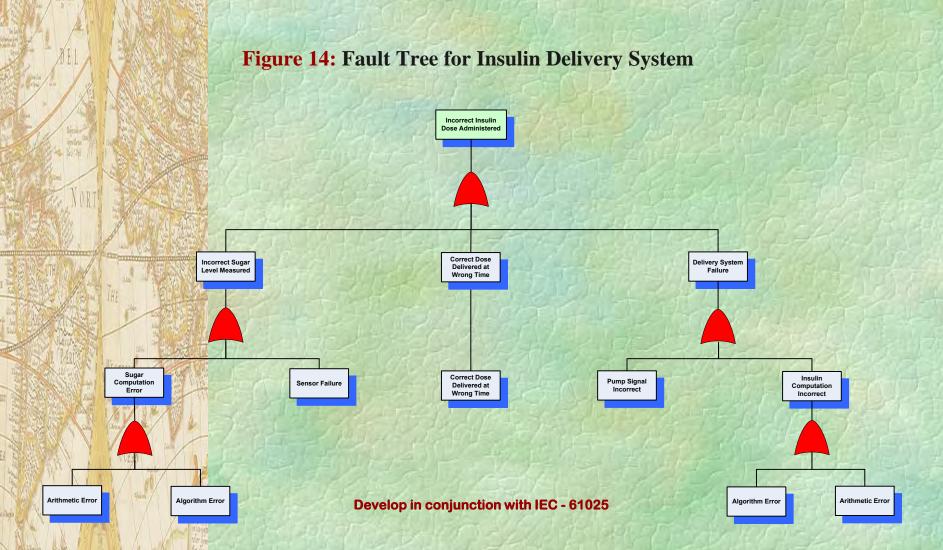
Software Reliability Specifications

Specifying Reliability Requirements

To specify reliability requirements, use one or more of the three methods described below. The methods are:

- **1.** Release Date
- 2. System Balance
- 3. Life Cycle Cost Optimization


The first approach is used when the release date is particularly critical. Generally appropriate for flight system facing a fixed launch time, or commercial systems aiming at delivery within a profit window.


The system balance method is primarily used to allocate reliabilities among components of a system based on the overall reliability requirements.

The basis of the third approach, is the assumption that reliability improvement is obtained by more expensive testing.

It is possible to use one of these methods for developing the requirements for one component of the system, and another for a separate component.

SOFTWARE RELIABILITY OBJECTIVES

Table 16: Example DFMEA of a Control CSCI for a MESA System

I	om	System Function Specification	Potential Failure Mode Error	Potential Effects of Failure Error	S E V	Potential Causes of Failure Error	O C C	Current Design Control / Mitigation		D E T	R P N	Corrective Action
				Se fait		是在长 洋	E	Method of Prevention	Detection Means	6	1	明月上上
C	SCI ontrol ignals	the MESA systemand maintains	Host Remote Computers out of synch	Inadvertent motion of hardware [ST, Sphere, OTSS]	9	Valid Host signal sent to remote and invalid mode [Closed vs. Open loops]	5	Static Analysis	Dynamic Analysis	5	225	Incorporate a loop synchronization algorithm
E	phere IWCI Control ignals	Sphere Control shall the sphere encoder and control line movements	Sphere control software generates erroneous motion command	Undesired command motion of sphere	9	Data initialization failure	4	РНА	Automated self checking of software	3	108	Incorporate software analysis checking to ensure valid motion commands are generated
Famel		DOLLAN marker	THE S		8	Undesired movement value generated	5	FMECA	verification testing	5	200	朝空
Con the line		See State			9	Invalid incremental movement calculation	6	FTA	Automated self checking of software	6	324	

Table 17: Hypothetical FMECA – Software and Computing System

1000	Item Name	Function Description	Failure Mode or Software Error	Error Cause [Specific Fault Type]	Local Effect	End System Effect	Severity ID	Apportionment	Beta	Probability Failure Rate	Op Time Exec Time	Failure Error Criticality	Risk Mitigation
	Propulsion Sensor	Acquire pressure and sensor input from propulsion system to provide information to flight control	Function works incorrectly because of calculation, logic, data, or interface errors	Incorrect conversion calculation	Incorrect sensor signals received from the propulsion system	Continue to operate with last sensor input	П	70	1	0.001200	10000	8.4	Use a separate software function to detect out of range conditions for temp and pressure
				Missing error handling routine	п		VI	15	1	0.001200	10000	1.8	Verify sensor before flight
and the second				Wrong use of branch instruction	11	Failing to issue proper abort and propulsion shutdown commands	Ι	10	1	0.001200	10000	1.2	Verify sensor before flight
12				Function called at wrong time	"		VI	5	1	0.001200	10000	0.6	Verify sensor before flight
EN.			Function fails to										
小学学会学	GPS Receiver	1 - Acquire GPS Signal 2- Send vehicle position to other functions	Function fails to execute or executes incompletely because of logic, data, or interface errors	Wrong use of branch function	Position information is not provided	Using incorrect input or having no GPS location data; therefore providing incorrect output	Ш	65	0.95	0.00105	10000		Use a separate software function to detect out of range conditions fincluding location values and signal strength
11- A				Non-existent or incorrect call between procedure			п	10	0.8	0.00105	10000	0.84	Perform GPS Check befor flight
5 (V) (E				Data out of range or incorrect			III	25	1	0.00105	10000	2.625	
													Use a separate
and the second	Closed Valve	When limits are exceeded command the main fuel and oxidizer valves to close	Fails to work or performs incompletely because of logic, data or interface errors	Wrong use of branch function	Signal is not sent to valve actuators	Failing to close valves, resulting in continued THRUST	I	65	0.95	0.003500	10000	21.6125	software execution monitoring function to detect whether the function was completed
AN AN				Non-existent or incorrect call between procedure			п	10	0.8	0.003500	10000		Making manual shutdown procedure available
in the				Data out of range or incorrect			ш	25	1	0.003500	10000	8.75	

Table 18: Preliminary Hazard Analysis Generic Insulin Infusion Pump

-		MARCH PLY DUAL AND ST									
1	Control No.	Hazard Categories	Hazard Description	Potential Error Failure Cause	Potential Error Failure Effect	Hazard Control	Severity	Hazard Risk Index	Risk Mitigation		
and and	C1.1	Therapeutic	Overdose: The user receives more insulin than required to maintain desirable BG levels	Software update error or failure	Unexpected software execution. Also health condition known as Hyporglycemia [damage to patient health]	В	п		Alarms and alerts, warning on screen for user, fail safe protection device		
-	C1.2		Underdose: The user receives more insulin than required to maintain desirable BG levels	Software defects, e.g., stack overflow, pointer corruption, math overflow, race conditions	Health condition known as Hyperglycemia [damage to patient health]	С	Π	IIC	Alarms and alerts, warning on screen for user		
and some	C1.3			Operating systems and/or runtime supports corrupted, failed or updated		с	п	пс	Alarms and alerts, warning on screen for user		
	C1.4			Hardware failure, e,g., central processing unit [CPU], memory, input/output [I/O], BUS, power glitch, radiation/electromagnetic interference [EMI]		А	П		Alarms and alerts, fail safe protection device		
EN ISA	C1.5	Therapeutic	Overdose: The user receives more insulin than required to maintain desirable BG levels	Pump provides the user only limited flexibility, such as coarse increment steps, to input parameters critical to bolus calculation	Incorrect correction bolus is recommended by the bolus calculator. Also health condition known as Hyporglycemia [damage to patient health]	С	Ш		Alarms and alerts, warning on screen for user		
	1.6		Underdose: The user receives more insulin than required to maintain desirable BG levels	Inappropriate or incorrect calculation of insulin on board [IOB]	Health condition known as Hyperglycemia [damage to patient health]	с	п	ШС	Alarms and alerts, warning on screen for user, override systemHyporglycemia		
Hoy !	C1.7			Unexpected software execution		D	п	IID			
	C1.8	Therapeutic	Overdose: The user receives more insulin than required to maintain desirable BG levels	Pump only provides limited options for the user to configure correction factor	Incorrect or inappropriate basal profiles are programmed/activated	в	п		Alarms and alerts, warning on screen for user, self checking software		
No. and the	C1.9		Underdose: The user receives more insulin than required to maintain desirable BG levels	Pump provides limited or no flexibility for the user to perform basal delivery profiles to compensate for different behavior patterns	Health condition known as Hyperglycemia [damage to patient health]	С	Ш	ШС			
a the second	C1.10		Incorrect Treatment: The user receive either an incorrect drug or a correct drug with incorrect concentration	Pump does not display necessary details about basal profiles on the user interface, e.g., time of latest modification, causing the user to activate an inappropriate basal profile	Under Overdose which can lead to hyporglycemia or hyperglycemia	D	Ш		Alarms and alerts, warning on screen for user		

This is a medical device software - IEC 62304 [Use in conjunction with ISO 14971]

Table 19: Safety-Critical Function Matrix

		Safety-Critical Functions							
CSCI CSU Name	1	2	3	4	5	6	Ratings		
INIT	М		М	М			М		
SIGNAL		Н	М				Н		
DIHZ					Н		Н		
CLEAR				Н		Н	Н		
BYTE							N		

H - High: The CSCI or CSU is directly involved with a critical factor
 M - Medium: The CSCI or CSU is indirectly involved or subordinate to a critical factor
 N - None: The CSCI or CSU does not impact a safety-critical function.

ALLOCATING RELIABILITY TO SOFTWARE

	Table 24: Failure Rate Allocation Based on Criticality
Steps	Description Details of Step Requirements
	Determine the failure rate goal of the software: λ_s
24	Determine the number of software CSCIs in the aggregate: N
3	For each i th CSCI, i = 1, 2,, N determine its criticality factor c_i . The lower the c_i the more critical the CSCI.
4	Determine τ_i the total active time of the i th CSCI, i = 1, 2,, N. Determine T the operation time of the aggregate.
IE ITERNE	Compute the failure rate adjustment factor K: $K = \frac{\sum_{i=1}^{N} c_i * \tau_i}{T}$
DOLLAN G	Compute the allocated failure rate goal of each CSCI $\lambda_i = \lambda_s \left(C_i / K \right)$ [Divide K makes the allocated CSCI failure rates build up to the aggregate failure rate goal].

ALLOCATING RELIABILITY TO SOFTWARE

Solution

It is estimated for the Laser to be used to support approximately 1100 potential cases over 10-year service life. Since item 1 control module has the lowest value this indicates that the first CSCI of the software aggregate is the most critical. Let's Compute the Adjustment Factor K: Substituting respective values in equation below:

1

$$\mathbf{K} = \frac{\sum_{i=1}^{n} \mathbf{c}_{i} * \tau_{i}}{\Gamma} = \frac{(1 \times 0.5) + (4 \times 1.5) + (3 \times 1.5) + (4 \times 1.0) + (5 \times 0.75)}{5.5} = 3.4$$

Then, the allocated failure rate goals of the software CSCI are tabulated in Table 22:

Module	Equation	Computation	Allocated Failure Rate
In the Report	$\lambda_{s} \left(c_{1}/K \right)$	0.001 (1/3.41)	0.00029326
λ_2	$\lambda_{s} (c_{2}/K)$	0.001 (2/3.41)	0.00058651
λ_3	$\lambda_{s} (c_{3}/K)$	0.001 (3/3.41)	0.00087976
CLAN when λ_4	$\lambda_{s} (c_{4}/K)$	0.001 (4/3.41)	0.00117302
λ_{5}	$\lambda_{s} (c_{5}/K)$	0.001 (5/3.41)	0.00159236
A mining	-1-C +06-1-1-1-1-	1717 12/1/2014 201	The Cieve

Table 26: Control Module Failure Rate Allocations

SOFTWARE RELIABILITY PREDICTIONS AND ESTIMATION MODELS

AND MARKED AND AND AND AND AND AND AND AND AND AN	1 8	
Issues	Prediction Models	Estimation Models
Data Reference	Utilized Historical Data	Uses data from current software development effort
When Used In Development Cycle	Usually made prior to development or test phases, can be used as early as concept phase	Usually made later in life cycle (After some data has been collected); not typically used in concept or development phases
Time Frame	Predict reliability at some future time	Estimate reliability at either present or some future time

Table 27: Comparing Prediction and Estimation Models

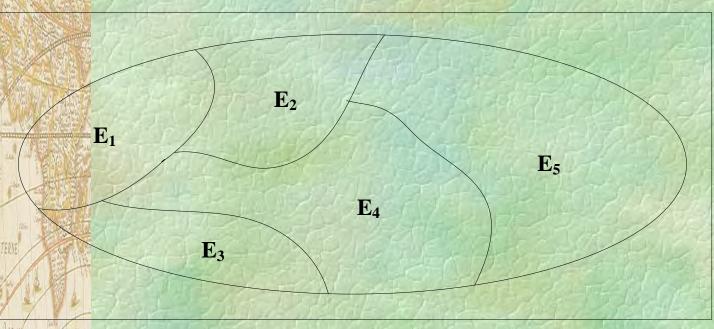
The estimation of remaining errors in the software is the deciding factor for the release of the software or the amount of more testing which is required. Software growth reliability models are used for the correct estimation of the remaining errors.

SW RELIABILITY MODEL Applications

Example Applications

Table 30 illustrates an example using Figure 22 Input Domain. Each row represents the data of each equivalence class, i.e., E1, E2, E3, E4, and E5. The estimated reliability of the Input Domain is 1 minus the sum of the equivalence class reliabilities from the fifth column.

As calculated for this example the total estimated reliability of this Input Domain is 0.94.


Summary of Input Domain Modeling Steps:

- **1. Determine the operational profile**
- 2. Define a partition of the input domain and assign operational probabilities to the equivalence classes in the partition
- **3. Define failures**
- 4. Select a set of test cases for each equivalence class
- 5. Run the tests
- 6. Estimate the reliability.

SW RELIABILITY MODEL Applications

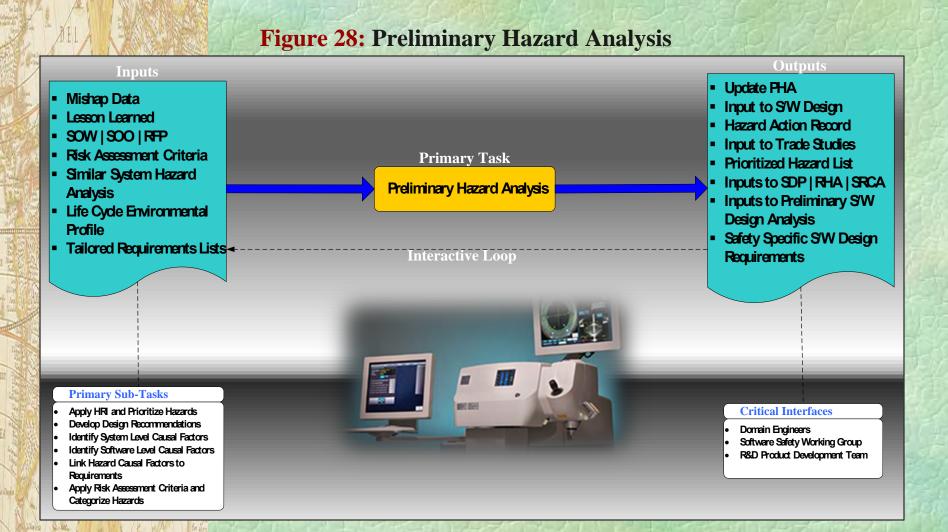
Figure 22: Input Domain Partitioned Into Sub-domains

SW RELIABILITY MODEL Applications

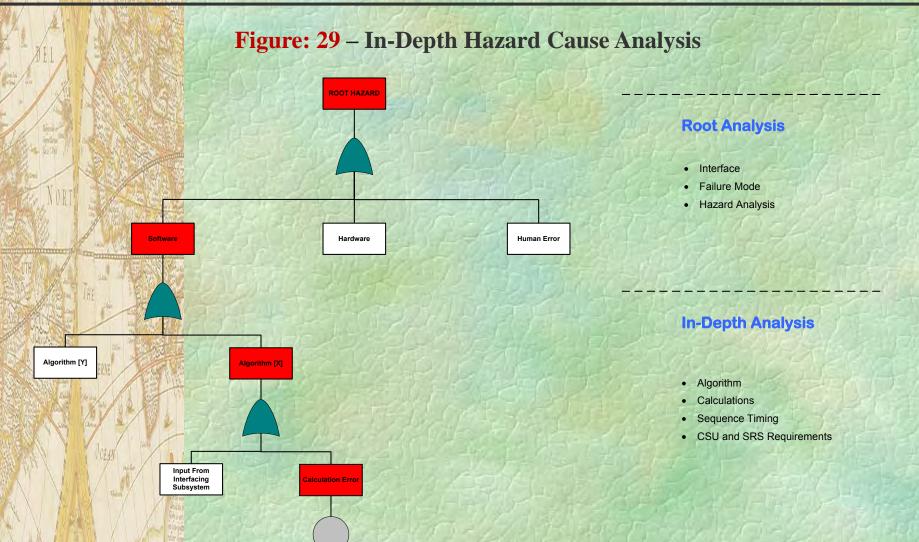
Table 30: Example of Input Domain Model Calculation

	Parameters			
Equivalence class	P (E ₁)	n	f ₁	$P(E_i)\frac{f_i}{n_i}$
1	0.20	20	2	0.0200
2	0.15	30	1	0.0050
3	0.50	40	2	0.0250
4	0.10	20	1	0.0050
5	0.05	30	3	0.0050
Total Estimated Reliability = $1 - \sum P(E_1) \frac{f_1}{n_1} = 1 - 0.00600 = 0.9400$				

SOFTWARE IN SAFETY CRITICAL SYSTEMS


Classification of Critical Systems

- Software controlled systems where failures can result in significant economic losses, physical damage or threats to human life are usually called critical systems.
 - The system may be software-controlled so that the decisions made by the software and subsequent actions are safety critical.
- Software is extensively used for checking and monitoring other safety critical components in a system.


Types of Critical Systems:

- 1. Safety Critical Systems A system whose failure may result in injury, loss of life, or major environment damage [Laser eye surgery device].
- 2. Mission Critical Systems A system whose failure may result in the failure of some goal-directed activity [navigation system of spacecraft]
- **3.** Business Critical Systems A system whose failure may result in the failure of the business using that system [customer account system in a bank].
- **Embedded** software systems whose failure can cause the associated hardware to fail and directly threaten people [Insulin pump control system].

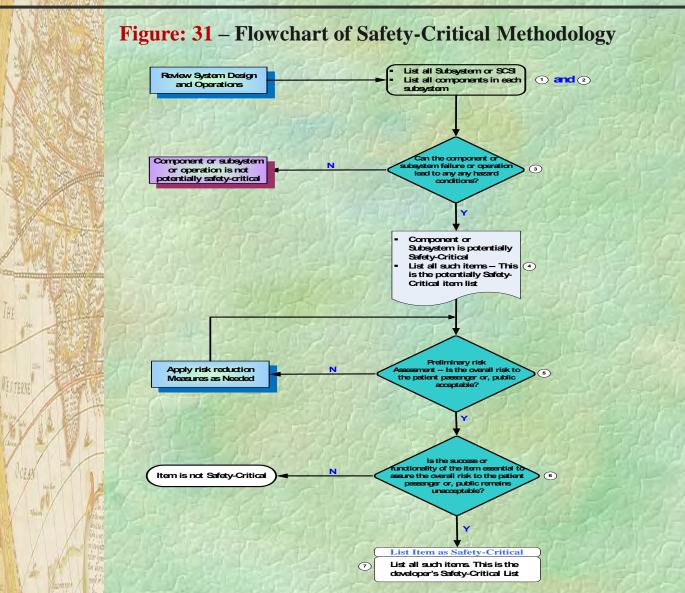
DERIVE SAFETY-CRITICAL SOFTWARE REQUIREMENTS

MATURED SOFTWARE SAFETY REQUIREMENTS

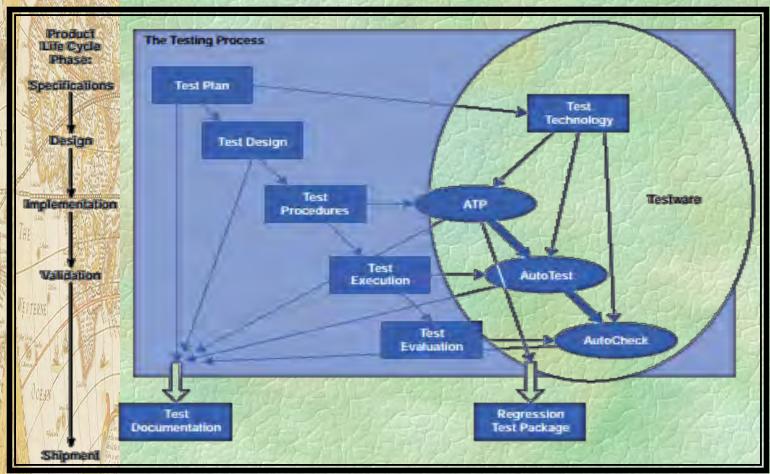
EVALUATING SOFTWARE SAFETY

Safety Analysis Techniques

Current Analysis techniques and methodologies available for conducting software safety analyses includes:

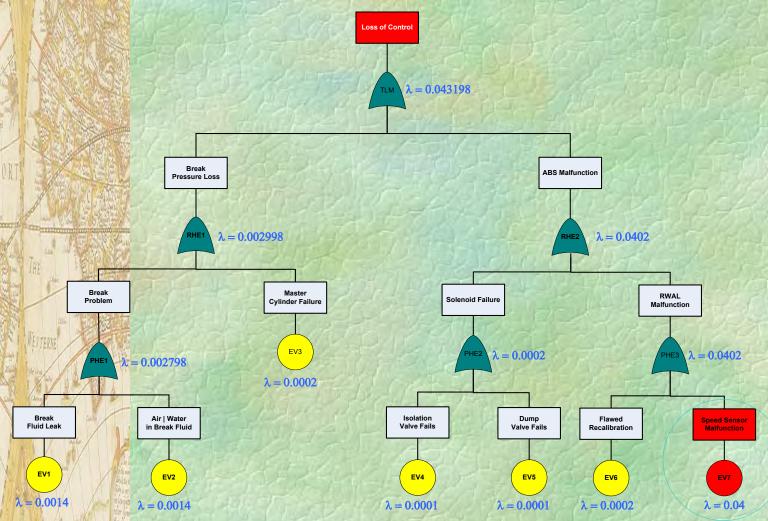

- 1. Petri net Analysis
- 2. Code Walk Through
- 3. Design Walk Through
- 4. Sneak Circuit Analysis
- 5. Safety Cross Check Analysis
- 6. Software Fault Tree Analysis
- 7. Preliminary Hazard Analysis
- 8. Failure Modes and Effect Analysis
- 9. Software | Hardware Integrated Critical Path Analysis

A systematic, logical, disciplined System Safety Process generally consists of one or more of these analyses and procedures undertaken as part of the design and development effort to ensure system safety.



SAFETY CRITICALITY ASSESSMENT

Testing Safety-Critical Software


Figure: 32 – The Software Testing Process for HP OmniCare Patient Monitors.

Source: June 1997 Hewlett-Packard Journal

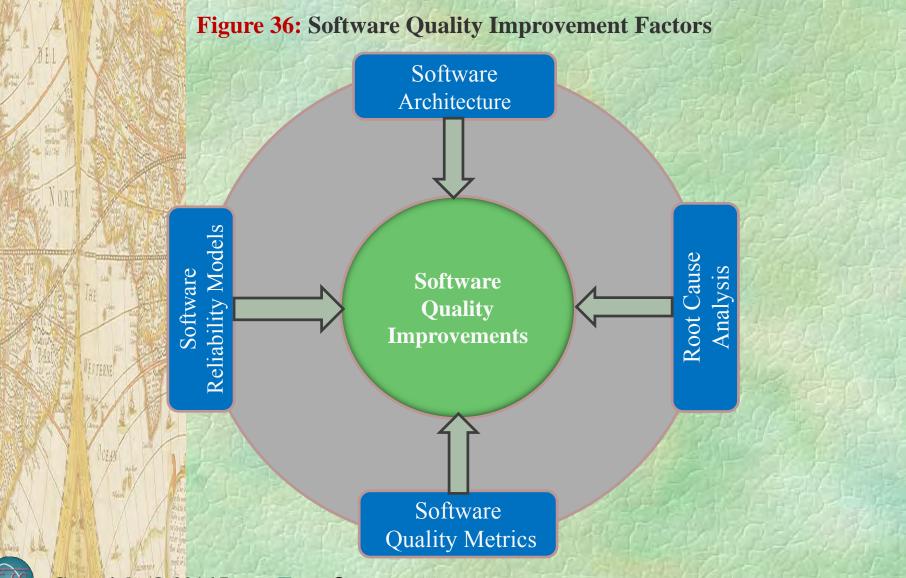

CASE STUDY APPLICATION

Figure 35: ABS Fault Tree Analysis – Faulty Sensor Case

SOFTWARE DESIGN RELIABILITY IMPROVEMENT

M8 – SEC 2 - LEARNING OBJECTIVES

Participant shall be able to:

٠

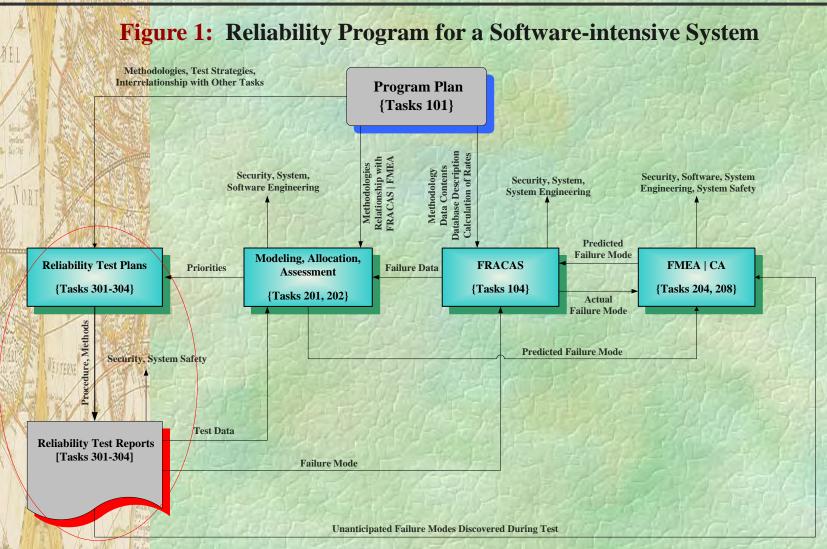
٠

- **Distinguish** between defect testing and statistical testing and identify rules that governs testing.
- Identify sequence of stages to achieve design for reliability in future.
- List one or more reasons for testing software and identify specific phase of the lifecycle when specific testing is executed.
- Utilize test coverage methodology to determine software reliability.
- Understand the various testing methods that can be used to discover software faults and strategies that can be applied to determine reliability.
 - **Distinguish** between defect testing, functional testing, statistical usage testing and acceptance testing.
 - Learn how to select an acceptance sampling plan for reliability demonstration.

Adapt | Implement | Improve

SOFTWARE RELIABILITY PLANNING

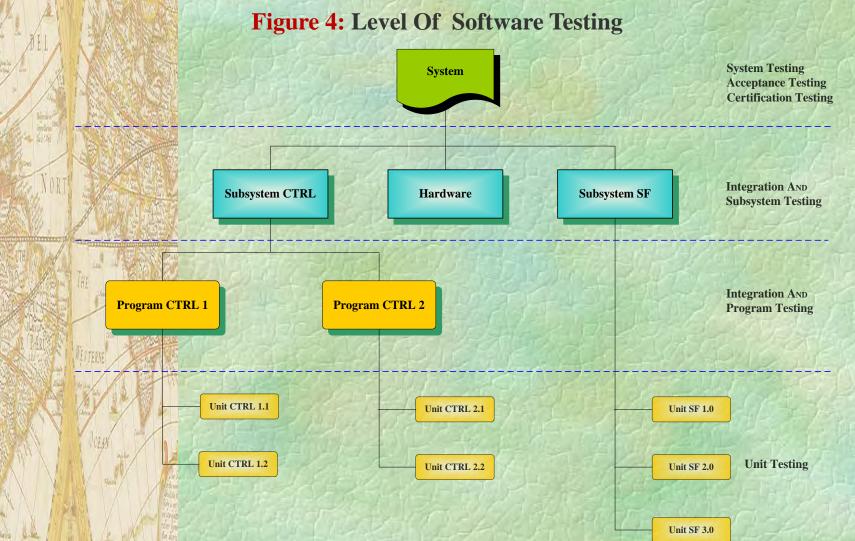
Early Test Design


Test Design find faults. Faults found early are cheaper to fix Most significant faults found first Faults prevented, not built inst design No additional effort, re-schedule test design Changing requirements caused by test design

Software testing involves executing and implementation of the software with test data and examining the outputs of the software and its operational behavior to check that it is performing as required.

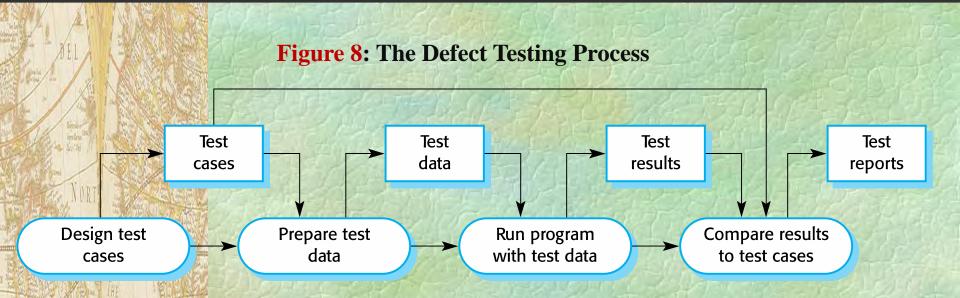
Early test design helps to build quality, stops fault multiplication

SOFTWARE RELIABILITY PLANNING



SOFTWARE VERIFICATION AND VALIDATION PLANNING

	Table 1: Reasons for Testing Software			
Item No.	Reason	Comments		
na Liene ² naturalis naturalis	Detect, expose and correct defect	Defect can be in a code, requirements and/or design. Gives programmers information they can use to prevent future defects		
2 Nort	Demonstrate that requirements have been satisfied	The rationale for any test should be directly traceable to a customer requirement		
3	Assess whether the software is suitable to meet the customer's need	Give management the information it needs to assess potential risks associated with the product		
4	Calibrate Performance	Measuring processing speed, response times, resource consumptions, throughput and efficiency		
5	Measure Reliability	Quantify the reliability of the software for the customer [reliability demonstration], or for internal improvements [reliability growth] prior to delivery to customer		
6	Ensure change modifications have not introduce new faults	Referred to as regression testing		
7	Establish due diligence for protection against product liability litigations	May provide some level of protection against [justifiably or unjustifiably] dissatisfied customer		



SOFTWARE VERIFICATION AND VALIDATION PLANNING

A Model of the Software Testing Process

Defect testing is intended to find inconsistencies between a program a specification.

These inconsistencies are usually due to program faults or defects.

The tests are designed to reveal the presence of defects in the system rather than to stimulate operational use.

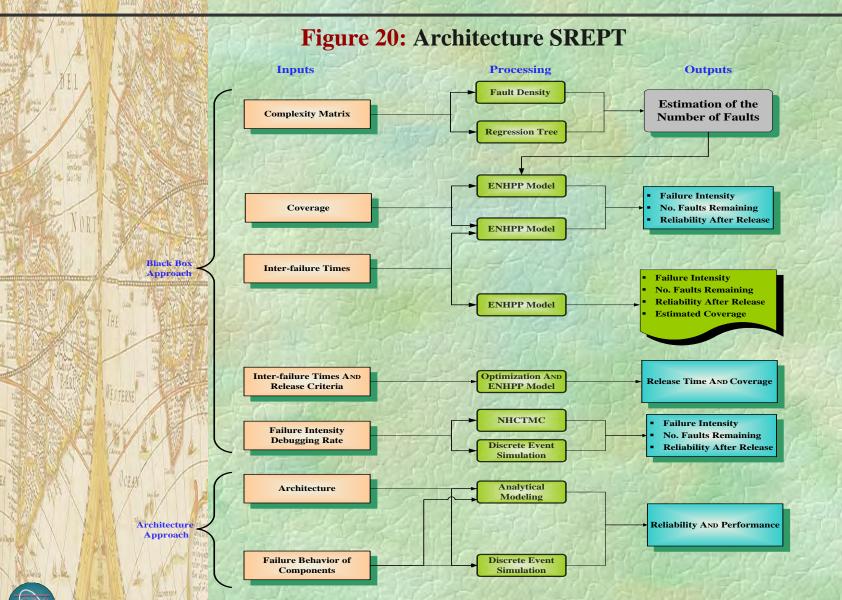
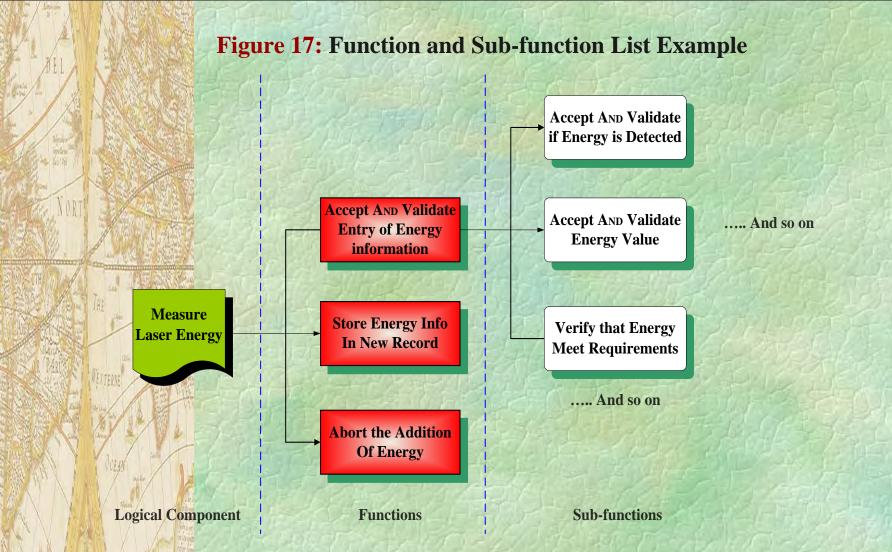
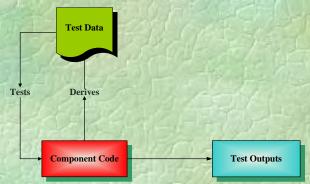

SOFTWARE VERIFICATION AND VALIDATION PLANNING

Table 2: Summary of Key Tests Executed in Software Validation


Item No.	Software Test	Comments
heart 1 . A faith	Unit	Demonstrates correct functionality of critical software elements
Nor2	Interface	Shows that critical computer software units execute together as specified
3	System	Demonstrates the performance of the software within the overall system
All	Stress	Confirms the software will not cause hazards under abnormal circumstances, such as unexpected input values or overload conditions
THE REPORT	Regression	Demonstrates changes made to the software did not introduce conditions for new hazards
6 North Mark	Statistical Testing	This type of testing is used to test the program's performance and reliability and check how it works under operational conditions
7	Acceptance Testing	Verifies software acceptability based on input of operational usage that are generated

SOFTWARE TESTS WITH SPECIFIC OBJECTIVES

FUNCTIONAL SYSTEM TESTING


<u>ETS</u>

SOFTWARE TESTS WITH SPECIFIC OBJECTIVES

White Box Testing Methodology

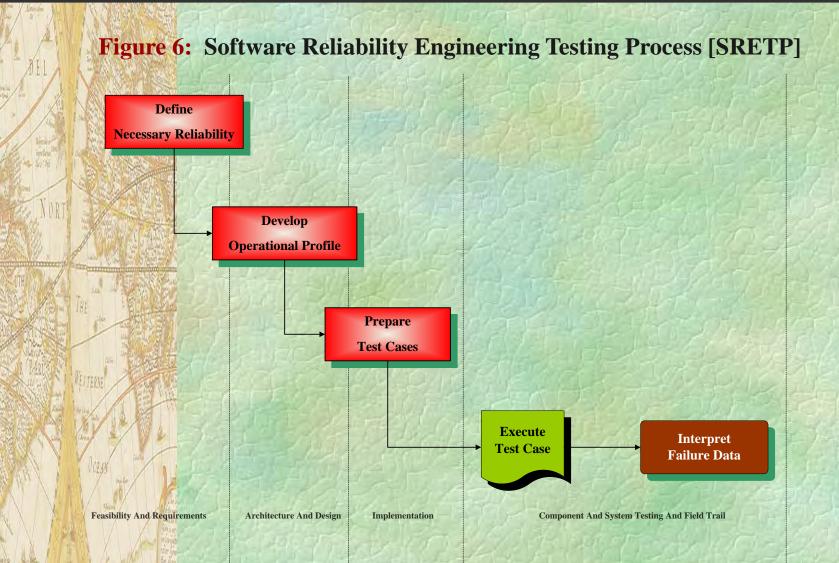

- White Box testing, or structural testing, which is an analysis of the details of the structure of the program, coding, language, and data base design.
- Structural testing is an approach to testing where the tests are derived from knowledge of the software structure's and implementation.
- Structural testing is usually applied to relatively small program units such as sub-routines or the operations associated with an object.
 - The analysis of the code can be used to determine how many test cases are needed to guarantee that all the statements in the program or component are executed at least once during the testing process.

Figure 21: Structural Testing

SOFTWARE RELIABILITY TESTING PROCESS

<u>A</u>

SW TEST COVERAGE APPLICATION

Example Application

 Table 7 list the respective proportional variable, corresponding ratios and one weighting scheme.

Variables	Ratios	Weighted	Value
1 A a	0.95	W ₁	0.10
b	0.99	W ₂	0.15
c	0.98	W ₃	0.15
d	0.96	W ₄	0.60

Table 7: Test Coverage Weightage Factors

For the purpose of test coverage reliability, it has been analytically determined that the total number of failure modes addressed (parameter "d") is the most important.

The total number of inputs tested (parameter "b") and the total number of functions verified (parameter "c") are equally important.

Of the least important is the total number of independent path tested (parameter "a").

SW TEST COVERAGE APPLICATION

Example Application

The resulting test coverage reliability is calculated to be:

 $\mathbf{R} = \frac{(0.95 * 0.10) + (0.99 * 0.15) + (0.98 * 0.15) + (0.96 * 0.60)}{0.10 + 0.15 + 0.15 + 0.60} = \frac{0.9665}{1} = 0.9965$

A second weighting scheme of w1 = 0.05, w2 = 0.25, w3 = 0.25, and w4 = 0.45, using the same values for the four proportional variables, provides different results:

$$R = \frac{(0.95 * 0.25) + (0.99 * 0.25) + (0.98 * 0.25) + (0.96 * 0.45)}{0.05 + 0.25 + 0.25 + 0.45} = \frac{0.972}{1} = 0.972$$

Comparing the two weighted results with the test coverage reliability when all **factors** are weighted equally:

$$\mathbf{R} = \frac{(0.95 * 1) + (0.99 * 1) + (0.98 * 1) + (0.96 * 1)}{1 + 1 + 1 + 1} = \frac{3.88}{4} = 0.97$$

SOFTWARE TESTS WITH SPECIFIC OBJECTIVES

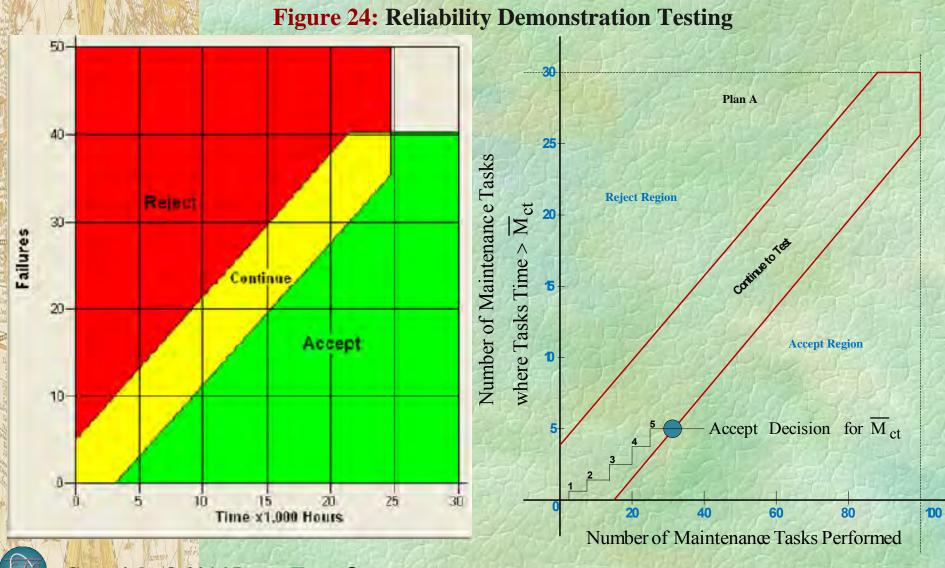
Reliability | Qualities

- It is very important to understand the quality characteristics you want to verify during testing.
- **Determine** the approach based on your reliability testing objectives and apply methods based anticipated output.
- Software Reliability:
 - 1. System will be reliable How to test this?
 - 2. 2 failures per year over ten years
 - 3. Mean Time Between Failures [MTBF]
 - 4. Reliability Growth Models
- **Other Qualities**
 - 1. Maintainability, portability, adaptability, etc.

SOFTWARE ACCEPTANCE TESTING

Software Reliability Testing

This is the final stage in the testing process before the system is accepted for operational use. At this stage the recommendation is for the software engineer to provide data for the system test instead of simulated data. It is expected that this test will reveal errors and omission in the system requirement definitions. It should also reveal requirement problems where system's facilities do not really meet the user's need or the system performance is unacceptable.


Software System shall be verified and accepted by performing Reliability Demonstration Test (RDT). The Failure Free Execution Test/Fix Duration Test shall be executed to accept or reject software performance. Producer's and consumer's risk shall range from 10% (Low risk) to 30% (High risk).

For Fixed Test Plan: Lower MTBF $\theta_1 = X$ Hours, Producer's and Consumer's risk = 20% and Reliability Goal = 1000 hours to failure.

For Failure Free Execution Test Plan: $\lambda_1 = 0.0001$ Failures/Hr, Producer's and Consumer's risk = 30%, and reliability goal for software $\lambda_0 = 0.00005$ Failures /Hr

SOFTWARE DESIGN ANALYSIS

Further Application of Software Reliability Model

Musa's Basic Model

- **Assumption:** Decrement in failure intensity function is constant.
- **Results:** Failure intensity is a function of average number of failures experienced at any given point in time [= failure probability]:

$$\lambda(\mu) = \lambda_0 \left[1 - \frac{\mu}{v_0} \right]$$

- Where:
 - **1.** $\lambda(\mu)$: Failure Intensity
 - **2.** λ_0 : Initial failure intensity at start of execution
 - 3. µ: Average total number of failures at a given point in time
 - **4.** $-\mathbf{v}_0 =$ Total number of failures over infinite time

Further Application of Software Reliability Model

Example 1

- Let's assume that we are at some point in time t time units in the life cycle of a software system after it has been deployed.
 - Let's also assume that the program will experience 120 failures over infinite execution time. During the last t time unit interval 60 failures have been observed [and counted0. The initial failure intensity was 10 failures per CPU hour.
 - **Compute the current** [at t] failure intensity:

Solution

 $\lambda(\mu) = \lambda_0 \left[1 - \frac{\mu}{v_0} \right]$

Substitute respective values in equations

 $\lambda(60) = 10* \left[1 - \frac{60}{120} \right] = 5 \left[\frac{\text{failures}}{\text{CPU Hour}} \right]$

Achieving Design for Reliability

Sequence of Stages to Achieve DFR

- To achieve reliable system design, fault tolerance mechanism needs to be in place. A typical response to system or software faults during operation includes a sequence of stages:
- **Fault Confinement.** This stage limits the spread of fault effects to one area of the system, thus preventing contamination of other areas. Fault-confinement can be achieved through use of self-checking acceptance tests, exception handling routines, consistency checking mechanisms, and multiple requests/confirmations.
- **Fault Detection.** This stage recognizes that something unexpected has occurred in the system. Fault latency is the period of time between the occurrence of a software fault and its detection.
 - **1. Off-line** techniques such as diagnostic programs can offer comprehensive fault detection, but the system cannot perform useful work while under test.
 - 2. On-line techniques, such as watchdog monitors or redundancy schemes, provide a real-time detection capability that is performed concurrently with useful work.

Diagnosis. This stage is necessary if the fault detection technique does not provide information about the failure location and/or properties.

Achieving Design for Reliability

Sequence of Stages to Achieve DFR

Reconfiguration. This stage occurs when a fault is detected and a permanent failure is located.

- **1.** The system may reconfigure its components either to replace the failed component or to isolate it from the rest of the system.
- 2. Successful reconfiguration requires robust and flexible software architecture and the associated reconfiguration schemes.

Recovery. This stage utilizes techniques to eliminate the effects of faults. Two basic recovery approaches are based on: fault masking, retry and rollback.

- 1. Fault-masking techniques hide the effects of failures by allowing redundant, correct information to outweigh the incorrect information. To handle design (permanent) faults, N-version programming can be employed.
- 2. Retry, on the other hand, attempts a second try at an operation and is based on the premise that many faults are transient in nature.

Restart. This stage occurs after the recovery of undamaged information. Depending on the way the system is configured, hot restart, warm restart, or cold restart can be achieved.

CONCLUSION

Why should Companies Invest in Software Reliability?

- Will Determine Whether Defects are Predicted.
 - 1. Before code is written or
 - 2. During testing or Never
- **Performance** Measurements Accessed
 - 1. Normalized fielded defects [defect density]
 - 2. Minimize probability of late delivery
 - 3. Magnitude of late deliveries as a percentage of original schedule
 - 4. Existence of development practices, organization philosophy, methods, tools, process.
 - 5. Type of application, industry, duty cycle
 - 6. Product characteristics related to requirements, design, and code.

Source: Ann Marie Neufelder – These factors were measured on 28 real organizations developing real time software.

THE END

